R for Scientific and Data Intensive Computing

Burak Himmetoglu
ETS & CSC
bhimmetoglu@ucsb.edu

10/11/2017
Who uses R for what purpose?

Scientists, engineers and developers of a wide range of interests!

- Statistics
- Simulations
- Bioinformatics (Bioconductor)
- Data Analysis
- Predictive analysis, machine learning
- Data Visualization
- Web Apps, Packages, Projects (RStudio)
Question: R takes a long time to run, what can I do?

Possible answers:

• Use specialized packages for performance 🎉
• Try simple (shared memory) parallel tools 🎉
• Run your R code in a remote cluster 😊/😊
 • Large datasets that don’t fit your computer’s memory
 • Manually divide computations

• Try (distributed memory) parallelism, or Spark solutions 😊/😢
• Write C/C++ extensions for R 😊/😢
Examples in this seminar:

Clone the repository:

```bash
```

For example on the cluster (Knot):

```bash
export PATH=“/sw/csc/R-3.2.3/bin:$PATH”
```
Tutorial 1: Titanic Survival Prediction

https://www.kaggle.com/c/titanic

Jack: $P(\text{Survived}) \approx 0.19$

Rose: $P(\text{Survived}) \approx 0.74$

Prediction purely based on gender
Can we predict who survived?
Tidyverse

A collection of packages for data processing and visualization

https://www.tidyverse.org

E.g.: dplyr package contains these useful functions:

• group_by() # group by given column
• summarize() # assign a new column by aggregation
• mutate() # create/remove/manipulate columns
• left_join() # join data frames
• filter() # filter by a given rule
• select() # select columns
•
Data wrangling with: Dplyr

E.g.: Combine two data frames in a custom way. Connect operations by “pipe”

```r
train <- allData %>%
  filter(is.train == 1) %>%
  mutate(is.train = NULL) %>%
  left_join(survival, by = "PassengerId")
```

Pipe “allData” to filter

Subset data:
choose when column “is.train” is 1

Process column-wise:
Remove column “is.train”

Join with data frame “survival”:
By matching column “SurvivalId”
Model Matrices

- We need to convert all factor variables into numeric ones
- In general, values cannot be compared
- E.g. States in U.S, Gender, City etc.

```
model.matrix()
sparse.model.matrix()
```
Logistic Regression

- Linear model for classification

\[z_i = \beta_0 + \beta_1^T \cdot x_i \]

\[y_{\text{pred}, i} = \frac{1}{1 + e^{-z_i}} \]
Logistic Regression (with regularization)

- Parameters β_0, β_1 optimized to yield small error
- Overfitting problem: LASSO and Ridge regression
- α, λ by cross-validation (parallel part in glmnet)

This is the optimization problem:

$$\min_{\beta_0, \beta} \frac{1}{N} \sum_{i=1}^{N} l(y_i, \beta_0 + \beta^T x_i) + \lambda \left[(1 - \alpha)\|\beta\|_2^2/2 + \alpha\|\beta\|_1 \right]$$

Functions to use:

```r
cv.glmnet()  # Determines $\lambda$ by cross-validation
glmnet()    # Determines $\beta_0, \beta_1$ by optimization
```
Tutorial 2: Run R code on Knot cluster

- Remember: No RStudio to experiment with!
- Make sure that your R code runs from start to end
- Perform tests on your computer first

A simple script (text file) can be used to submit to the queue:

```bash
#!/bin/bash
#PBS -l nodes=1:ppn=12
#PBS -l walltime=01:00:00
#PBS -N MonteCarlo
#PBS -V

cd $PBS_O_WORKDIR
Rscript --vanilla montecarlo.R > output
```
Tutorial 2: Run R code on Knot cluster

Monte Carlo integration:

\[
Z = \int_0^1 \int_0^1 \ldots \int_0^1 dx_1 \, dx_2 \ldots \, dx_n \, e^{-x_1^2 - x_2^2 - \ldots - x_n^2}
\]

For (i = 1, NumSimulations){

Pick \(\{x_1, x_2, \ldots, x_n\} \) from a uniform distribution

\[
Z \leftarrow (\text{Volume of region}) \times \text{Integrand at } \{x_1, x_2, \ldots, x_n\}
\]

}

Average results (Z’s)
Running multiple R instances concurrently

#!/bin/bash
#PBS -l nodes=1:ppn=12
#PBS -l walltime=01:00:00
#PBS -N MonteCarlo
#PBS -V

cd $PBS_O_WORKDIR

Rscript --vanilla part1.R > out1 &
Rscript --vanilla part2.R > out2 &
.....
Rscript --vanilla part12.R > out12 &

wait
Resources for learning R

• swirl package (install.packages("swirl"))
• Coursera: https://www.coursera.org/learn/r-programming
• DataCamp: https://www.datacamp.com/courses/free-introduction-to-r

Introduction to Statistical Learning with applications in R

http://www-bcf.usc.edu/~gareth/ISL/