
Intro to
Singularity
Containers

Sharon Solis
Research Computing Consultant
Enterprise Technology Services (ETS)
Center for Scientific Computing (CSC)
swsolis@ucsb.edu
Elings 3229

Fuzzy Rogers
Research Computing Administrator
Materials Research Laboratory (MRL)
Center for Scientific Computing (CSC)
fuz@ucsb.edu
MRL 2066B

Paul Weakliem
Research Computing Administrator
CNSI Research Computing Support
Center for Scientific Computing (CSC)
weakliem@cnsi.ucsb.edu
Elings Hall 3231

mailto:swsolis@ucsb.edu
mailto:fuz@mrl.ucsb.edu
mailto:weakliem@cnsi.ucsb.edu

Ack!

• Acknowledgements - http://csc.cnsi.ucsb.edu/pubs
Please acknowledge the CSC in publications and presentations if you
are using our facilities computing resources (including staff
involvement) in your research.

“We acknowledge support from the Center for Scientific Computing
from the CNSI, MRL: an NSF MRSEC (DMR-1720256) and NSF CNS-
1725797.”

What is this thing you call a container?

• Containers are linux software environments where the user can have
control over everything but the kernel.
• Singularity containers can be used to package entire scientific

workflows, software and libraries, and even data. This means that you
don’t have to ask your cluster admin to install anything for you - you
can create a software workflow in a Singularity container and run it
on the clusters.
• That said, we admins have put together some containers and we can

and will help you with more complex containers (i.e.
Tensorflow/Keras).

Singularity has become it’s own Company
(though the Software is still OpenSource)

Originally developed at LBL

How to use a Singularity Container
(Knot-GPU2)

• export PATH=/sw/csc/singularity/bin:$PATH

• singularity shell /sw/csc/SingularityImg/ubuntu-tf17-knot-gpu2.img

• source ~/.bashrc

• Congratulations – you are now in a singularity container optimized for
the GPUs on knot-gpu2.cnsi.ucsb.edu.

• Note that this is an interactive session (i.e. the “shell” in the 2nd line).

• Note that you must have anaconda installed with tensorflow. Say
what?

Installing Anaconda Tensorflow
• Download anaconda (https://www.anaconda.com/download/#linux)

• You’ll want the 64bit x86 installer – I’ve normally used 2.7

• wget https://repo.anaconda.com/archive/Anaconda2-5.3.0-Linux-x86_64.sh

• sh Anaconda2-5.3.0-Linux-x86_64.sh (let anaconda modify your .bashrc)

• source .bashrc (to make sure anaconda is the chosen python)

• I’ve noticed that sometimes .bashrc isn’t always sourced, so sometimes explicitly issuing an

• export PATH=~/username/anaconda2/bin:$PATH

fixes the issue.

• Verify that by typing which python and it should say ~/anaconda2/bin/python

• pip install tensorflow-gpu (if it gives some errors on certain packages, just pip

install those like… pip install argparse and pip install PyHamcrest , etc.)

• A few items to add to the top of your .bashrc file to locate NVIDIA stuff
export PATH=/usr/local/nvidia:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

https://www.anaconda.com/download/
https://repo.anaconda.com/archive/Anaconda2-5.3.0-Linux-x86_64.sh

TF example

Let’s classify an image and see what a TF model sees in this photo.

[fuz@sinode170 ~]$ source activate tensorflow

(tensorflow) [fuz@sinode170 ~]$ /sw/csc/singularity-2.4.5/bin/singularity shell /sw/csc/singularity-images/ubuntu-tf1.5-
GPU9.img

Singularity: Invoking an interactive shell within container...

Singularity ubuntu-tf1.5-GPU9.img:~> import tensorflow as tf

bash: import: command not found

Singularity ubuntu-tf1.5-GPU9.img:~> which python

/usr/bin/python

Singularity ubuntu-tf1.5-GPU9.img:~> source .bashrc

Singularity ubuntu-tf1.5-GPU9.img:~> which python

/home/fuz/anaconda2/bin/python

Singularity ubuntu-tf1.5-GPU9.img:~/tensorflow-inception/models-master/tutorials/image/imagenet> python
classify_image.py

>> Downloading inception-2015-12-05.tgz 100.0%

Successfully downloaded inception-2015-12-05.tgz 88931400 bytes.

CRITICAL:tensorflow:File does not exist /tmp/imagenet/fluoromax.jpeg

Singularity ubuntu-tf1.5-GPU9.img:~/tensorflow-inception/models-master/tutorials/image/imagenet> mv ~/pod-weakliem-
brown-uc-santa-barbara.jpg /tmp/imagenet/fluoromax.jpeg

Singularity ubuntu-tf1.5-GPU9.img:~/tensorflow-inception/models-master/tutorials/image/imagenet> python classify_image.py
2018-11-01 16:07:01.444163: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow
binary was not compiled to use: AVX2 FMA
2018-11-01 16:07:02.015955: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1212] Found device 0 with properties:
name: Tesla P100-PCIE-16GB major: 6 minor: 0 memoryClockRate(GHz): 1.3285
pciBusID: 0000:02:00.0
totalMemory: 15.89GiB freeMemory: 14.57GiB
2018-11-01 16:07:02.949295: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1212] Found device 1 with properties:
name: Tesla P100-PCIE-16GB major: 6 minor: 0 memoryClockRate(GHz): 1.3285
pciBusID: 0000:03:00.0
totalMemory: 15.89GiB freeMemory: 14.57GiB
2018-11-01 16:07:03.256965: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1212] Found device 2 with properties:
name: Tesla P100-PCIE-16GB major: 6 minor: 0 memoryClockRate(GHz): 1.3285
pciBusID: 0000:82:00.0
totalMemory: 15.89GiB freeMemory: 14.57GiB
2018-11-01 16:07:03.565751: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1212] Found device 3 with properties:
name: Tesla P100-PCIE-16GB major: 6 minor: 0 memoryClockRate(GHz): 1.3285
pciBusID: 0000:83:00.0
totalMemory: 15.89GiB freeMemory: 14.57GiB

2018-11-01 16:07:03.568612: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1227] Device peer to peer matrix
2018-11-01 16:07:03.568718: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1233] DMA: 0 1 2 3
2018-11-01 16:07:03.568730: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1243] 0: Y Y N N
2018-11-01 16:07:03.568738: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1243] 1: Y Y N N
2018-11-01 16:07:03.568745: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1243] 2: N N Y Y
2018-11-01 16:07:03.568752: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1243] 3: N N Y Y
2018-11-01 16:07:03.568768: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] Adding visible gpu devices: 0, 1, 2, 3

2018-11-01 16:07:09.039015: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device
(/job:localhost/replica:0/task:0/device:GPU:0 with 14123 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, pci bus id:
0000:02:00.0, compute capability: 6.0)

2018-11-01 16:07:11.583130: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device
(/job:localhost/replica:0/task:0/device:GPU:1 with 14123 MB memory) -> physical GPU (device: 1, name: Tesla P100-PCIE-16GB, pci bus id:
0000:03:00.0, compute capability: 6.0)

2018-11-01 16:07:13.224968: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device
(/job:localhost/replica:0/task:0/device:GPU:2 with 14123 MB memory) -> physical GPU (device: 2, name: Tesla P100-PCIE-16GB, pci bus id:
0000:82:00.0, compute capability: 6.0)

2018-11-01 16:07:19.085977: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device
(/job:localhost/replica:0/task:0/device:GPU:3 with 14119 MB memory) -> physical GPU (device: 3, name: Tesla P100-PCIE-16GB, pci bus id:
0000:83:00.0, compute capability: 6.0)

2018-11-01 16:07:22.424384: W tensorflow/core/framework/op_def_util.cc:343] Op BatchNormWithGlobalNormalization is deprecated. It will cease
to work in GraphDef version 9. Use tf.nn.batch_normalization().

military uniform (score = 0.33332)

minibus (score = 0.05024)

crutch (score = 0.04971)

amphibian, amphibious vehicle (score = 0.02861)

jeep, landrover (score = 0.02484)

Obviously the training algorithm didn’t

account for groups of people – garbage in,
garbage out!

Making your own Singularity Containers
• The Workflow – Step 1 – Build a linux VM so you can be root

• Download and install a Virtual Machine application (I chose VirtualBox)
• For pod.cnsi.ucsb.edu, build a CentOS 7 virtual machine

• Choose your HD size so that it can accommodate your OS *and* your singularity images
that you will create (i.e. 20GBs or so)

• I chose CentOS-7-x86_64-Everything-1804.iso as the base
• My favorite mirror is http://mirrors.oit.uci.edu/centos/7/isos/x86_64/
• Remember that you want to install the Development Tools (Compute Node has it on the left)

• Then we’ll download and build singularity as we’ll be root on our own little linux
machine.

• And then you can build singularity images to fit your exact needs. Once you’ve tested
your workflow, you can copy those images to pod.cnsi.ucsb.edu and create jobs for them
to run.

http://mirrors.oit.uci.edu/centos/7/isos/x86_64/

Making your own Singularity Containers
• The Workflow – Step 2 – Getting and Building Singularity

• Start your VM from VirtualBox, login as root
• https://github.com/sylabs/singularity/releases - the .tar.gz are fine

• wget https://github.com/sylabs/singularity/releases/download/2.5.2/singularity-
2.5.2.tar.gz

• gunzip that file, untar that file
• cd singularity-2.5.2
• ./configure –prefix=/singularity (prefix not necessary) Note if configure fails with

missing packages – you might need to yum install somepackagelikegcc
• make - if there are no errors….
• make install
• yum install epel-release , yum install debootstrap

• Voila – you now have singularity in your VM and can create singularity
containers

https://github.com/sylabs/singularity/releases%20-%20the%20.tar.gz
https://github.com/sylabs/singularity/releases/download/2.5.2/singularity-2.5.2.tar.gz

• The Workflow – Step 3 – Creating an Ubuntu container
• Build an empty container

• export PATH=$PATH:/singularity/bin
• singularity create ubuntu.img
• singularity image.expand –size 4000 ubuntu.img
• singularity build ubuntu.img createdeb.def where createdeb.def:

• singularity shell ubuntu.img ß you’re now in the container (--writable)
• apt-get install python sudo ß and anything else you want to install (might need sudo

for other apt-gets like sudo apt-get install somepackageoranother – so you need sudo)
• Exit ß gets you out of the container back into CentOS 7

Making your own Singularity Containers

BootStrap: debootstrap
DistType: Debian
MirrorURL: http://us.archive.ubuntu.com/ubuntu
OSVersion: xenial

%runscript
apt-get install python

http://us.archive.ubuntu.com/ubuntu

Next Steps
• Now that you have a container- customize it to work with your workflow. Install

whatever packages you need.
• When you use a container on the clusters, it automatically mounts your home

directory.
• The container sees all of the system’s memory and CPUs, but none of the other

filesystems/directories unless you explicitly mount them – and then they’re
generally readonly unless it’s /scratch.
• singularity shell -B /scratch:/mnt /sw/singularity/SingularityImages-knot/ubuntu_croco.img

Here, the /scratch directory is mounted in your container at /mnt.

• From your CentOS 7 install, scp myubuntu.img username@pod.cnsi.ucsb.edu
• Note that once your image is on the clusters, it is immutable (unless you ask us to

alter something)

mailto:username@pod.cnsi.ucsb.edu

• Example job submission file on pod.cnsi.ucsb.edu – test-croco.job

• Example run file for the container – test-croco.in

• Submit the job
• sbatch test-croco.job

#!/bin/bash -l
#Serial (1 core on one node) job...
#SBATCH --nodes=1 --ntasks-per-node=1
cd $SLURM_SUBMIT_DIR
source .bashrc
singularity exec -B /scratch:/mnt /sw/singularity/SingularityImages-knot/ubuntu_croco.img /home/fuz/test-croco.in

export PATH=/home/fuz/anaconda2/bin:$PATH
apt list --installed
echo ""
echo "Which python am I using:"
which python
echo ""
Echo "Determine whether a number is prime or not"
python primeornot.py

What in the world is croco? (Just an FYI)

• Optimized parallel implementation of local sequence alignment
algorithms

• Local sequence alignment is a cornerstone of bioinformatics, allowing to compare the
amino-acid sequences of different proteins, or the nucleotide sequences of different
pieces of DNA. The Basic Local Alignment Search Tool (BLAST) has revolutionized the field
of bioinformatics, and is currently implemented in all free and commercial bioinformatics
packages. However, with the advent of Next Generation Sequencing (NGS) and the
development of new sequencing techniques, the utility of traditional BLAST
implementations is limited. CrocoBLAST combines the accuracy and general applicability
of BLAST with computational efficiency, accessibility, and user experience, so that NGS
data can be analyzed efficiently even when only modest computational resources are
available.

User currently using Singularity

CroCo was created to identify instances of Cross-Contamination in Next Generation Sequencing
runs. When NGS reads first came out, researchers realized that we rarely need as much data is
generated from a single sample, and that it is cost-effective samples concurrently on the same run.
However, years later it was found that doing so often results in 'bleed through', where the sequence
of one protein from one sample can be mislabeled as also being native to another sample in the
same run. Obviously, the impacts of this finding can be disastrous! CroCo is designed to check each
and every read for these types of errors. I now run each of the sequencing runs through CroCo prior
to using these data in downstream analyses so that I can be sure of which proteins are native to the
100-some species that we are working with to understand their evolutionary relatedness. Being
confident in the species relationships means being confident that the protein sequences are
correctly identified.

Singularity Tips
• Singularity can have environment variables in its containers

• Can also pipe that script through the container and into the Python binary which
exists inside the container using the following command:

• Notice how the runscript has bash followed by $@? This is good practice to
include in a runscript, as any arguments passed by the user will be given to the
container.

Singularity ubuntu-tf17-knot-gpu2.img:/.singularity.d/env> more 90-environment.sh
Custom environment shell code should follow
export PATH=/usr/local/nvidia:$PATH
export LD_LIBRARY_PATH=/usr/local/nvidia:$LD_LIBRARY_PATH

cat hello.py | singularity /sw/singularity/SingularityImages-knot/ubuntu_croco.img

singularity exec /sw/singularity/SingularityImages-knot/ubuntu_croco.img cat /.singularity.d/runscript
#!/bin/sh
exec /bin/bash "$@"

There is so much more
• Obviously Machine Learning / AI can use Singularity extensively.

• However we have yet to get it working consistently on pod.cnsi.ucsb.edu but
we’re working on it and hope to have it up and running in the coming month
(or two depending on workload)

• The LBL docs are still online and we’ve PDF’d them for future use.
Once available they’ll be online on the http://csc.cnsi.ucsb.edu
documentation section. http://singularity.lbl.gov/

• More to come – if you’re interested in something specific please let us
know and we’ll inform you of future enhancements and how they can
be used (i.e. docker images)

http://csc.cnsi.ucsb.edu/

