
Very Quick Introduction to CUDA

Burak Himmetoglu

Supercomputing Consultant

Enterprise Technology Services &
Center for Scientific Computing

University of California
Santa Barbara

e-mail: bhimmetoglu@ucsb.edu

mailto:bhimmetoglu@ucsb.edu

Hardware Basics

Control Unit
ALU ALU

ALUALU

Cache(s)

DRAM

DRAM

CPU GPU

• CPUs are latency oriented (minimize execution of serial code)
• GPUs are throughput oriented (maximize number of floating point operations)

Data Parallelism

+ =

a b c

Eg. vector addition, serial vs. parallel

+ =

a b c

CUDA C
• Compute Unified Device Architecture
• NVIDIA GPUs can be programmed by CUDA, extension of C language (CUDA

Fortran is also available)
• CUDA C is compiled with nvcc

• Host —> CPU; Device —> GPU (They do not share memory!)
• The HOST launches a kernel that execute on the DEVICE
• A kernel is a data-parallel computation, executed by many threads.
• The number of threads are very large (~ 1000 or more)

Thread Organization

1 2 255 1 2 255 1 2 255 1 2 255

Block 0 Block 1 Block 2 Block n-1
Grid

CUDA C
• Threads are grouped into blocks.
• Each block shares memory.

Eg. Vector addition:

int main(void) {
…
vecAdd<<< blocksPerGrid, THREADS_PER_BLOCK >>> (d_A, d_B, d_C);
…

}

__global__ static void vecAdd (float *a, float *b, float *c){
…..

}

The __global__ qualifer alerts the compiler that the code block will run on the
DEVICE, but can be called from the HOST.

CUDA C
• Grids and threads can also be arranged in 2d arrays (useful for image

processing)

dim3 blocks(2,2)
dim3 threads(16,16)
….
kernel <<< blocks, threads >>>();
…

block(0,0) block(1,0)

block(0,1) block(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,15)

Thread
(1,15)

Code Example - 1

#include <stdio.h>

__device__ const char *STR = “HELLO WORLD!”;
const char STR_LENGTH = 12;

__global__ void hello(){
printf(“%c\n”, STR[threadId.x % STR_LENGTH]);

}

int main(void){
int threads_per_block = STR_LENGHT;
int blocks_per_grid = 1;

hello <<< blocks_per_grid, threads_per_block >>> ();

cudaDeviceSynchronize();

return 0;
}

Hello World!

Halt host thread execution on CPU until the device has finished
processing all previously requested tasks.

H
E
L
L
O

W
O
R
L
D
!

Output:

Code Example - 2
Vector Addition (Very large vectors)

e.g.: blockDim = 4, gridDim = 4

block 0

block 1

block 2

block 3

th 0 th 1 th 2 th 3

tid = th.id + blk.id * blk.dim
= 1 + 1 * 4
= 5

Code Example - 2
Vector Addition (Very large vectors)

+

=

a

b

c

e.g.: N = 256, blockDim = 2, gridDim = 2 —> offset = blockDim * gridDim

blockDim * gridDim

Code Example - 2
• Define arrays to be used on the HOST, and allocate memory.

• Copy arrays to the DEVICE

• Launch the kernel, then copy result from DEVICE to HOST

• Free memory

Code Example - 3
Dot product

• Recall, each Block shares memory!
• Each block will have a its own copy of cahce[], i.e. a partial result.
• Final step is reduction, i.e. summing all the partial results in cahce[] to obtain a

final answer.

vector for storing each block’s result
index used for storing

temp has the result within each block
For each block, there is a different cache
vector.
Wait until all threads finish!

Code Example - 3

Parallel reduction

Finally, write the final answer, with
one thread (serial).

+ +
+

+

BlockDim = 8Parallel reduction:
(Not the best one!)

Repeat for BlockDim/2
(i /=2); while (i !=0)

