Very Quick Introduction to CUDA

Burak Himmetoglu

Supercomputing Consultant

Enterprise Technology Services &
Center for Scientific Computing
University of California
Santa Barbara

e-mail: bhimmetoglu@ucsb.edu

mailto:bhimmetoglu@ucsb.edu

Hardware Basics

CPU
Control Unit = =

GPU

e CPUs are latency oriented (minimize execution of serial code)
e GPUs are throughput oriented (maximize number of floating point operations)

Data Parallelism

Eg. vector addition, serial vs. parallel

CUDA C

e Compute Unified Device Architecture

e NVIDIA GPUs can be programmed by CUDA, extension of C language (CUDA
Fortran is also available)

e CUDA C is compiled with nvee

e Host —> CPU; Device —> GPU (They do not share memory!)

e The HOST launches a kernel that execute on the DEVICE

e A kernel Iis a data-parallel computation, executed by many threads.
e The number of threads are very large (~ 1000 or more)

Thread Organization

Grid
Block 0 Block 1 Block 2 Block n-1

295 295 295 295

CUDA C

e [hreads are grouped into blocks.
e Fach block shares memory.

Eg. Vector addition:

int main(void) {

vecAdd<<<|blocksPerGridl|THREADS_PER_BLOCK|>>> (d_A,d_B, d_O);

e

__8lobal__[static void vecAdd (float *a, float *Db, float *c){

The __global__ qualifer alerts the compiler that the code block will run on the
DEVICE, but can be called from the HOST.

CUDA C

e (Grids and threads can also be arranged in 2d arrays (useful for image
processing)

dima blocks(2,2)
dimd3 threads(16,16)

kernel <<< blocks, threads >>>();

Thread Thread |
1
block(0,0) [block(1,0) (0,0) (1,0)
block(0,1) |[block(1’1)) ‘I;Br?gj T(?r?g?

Code Example - 1

Hello World!
#include <stdio.h> O U t p U t :
__device__ const char *STR = “HELLO WORLD!”; H
const char STR_LENGTH = 12; E
L
__global__ void hello() L,
printf(“%c\n”, STR[threadld.x % STR_LENGTH]); 0
}
int main(void){ —P A
int threads_per_block = STR_LENGHT, 0O
int blocks_per_grid = 1; R
hello <<< blocks_per_grid, threads_per_block >>> (); L
D
cudaDeviceSynchronize(); I

return O;

Halt host thread execution on CPU until the device has finished
processing all previously requested tasks.

Code Example - 2

Vector Addition (Very large vectors)

__global__ void add(int *a, int *b, int *xc){
int tid = threadldx.x + blockIdx.x * blockDim.x ; // handle the data at this index
while (tid < N) {
cltid] = altid] + b[tid];
tid += blockDim.x * gridDim.x;
}
}

e.g.: blockDim = 4, gridDim = 4
thO thl th&2 thsa

block O

tid = th.id + blk.id * blk.dim block 1
=1+1*4

=5
block 2

block 3

Code Example - 2

Vector Addition (Very large vectors)

__global__ void add(int *a, int *b, int *c){
int tid = threadldx.x + blockIdx.x * blockDim.x ; // handle the data at this index
while (tid < N) {
c[tid] = altid] + b[tid];
tid += blockDim.x * gridDim.x;
}
}

e.g.: N = 256, blockDim = 2, gridDim = 2 —> offset = blockDim * gridDim

a

< >
blockDim * gridDim

X (T T T [|

Code Example - 2

e Define arrays to be used on the HOST, and allocate memory.

int a[N], bIN], c[N];
int xdev_a, *dev_b, =xdev_c;

// Allocate memory on the GPU

cudaMalloc((void*x)&dev_a, N * sizeof(int));
cudaMalloc((void#**x)&dev_b, N * sizeof(int));
cudaMalloc((void#x)&dev_c, N * sizeof(int));

e Copy arrays to the DEVICE

//Copy the arrays 'a' and 'b' to the GPU
cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);

e | aunch the kernel, then copy result from DEVICE to HOST

add<<<128,128>>>(dev_a, dev_b, dev_c) ; // Launch N=128 blocks each containing M=128 threads

//Copy the array 'c' back from the GPU to the CPU
cudaMemcpy(¢, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);

e Free memory

//Free memory

cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);

Code Example - 3

Dot product

__global__ void dot (float xa, float *b, float *c) { . ;
—shared__ float cache(threadsPerBlock]; < vector for storing each block’s result
1Nt 1 = ThreadloX.X + DILOCKLIOX.X % DLOCKU1mM. X,
int cachelndex = threadldx.x; index used for storing
float temp = 0;
while (tid<N){

temp += al[tid] * b[tid]; Cp
§) tid += blockbin.x & gridoin.x; < temp has the result within each block
77 Set cache values For each block, there is a different cache
cache[cacheIndex] = temp; <
vector.
// Synchronize threads _) ..
__syncthreads(); B Wait until all threads finish!

e Recall, each Block shares memory!

e Each block will have a its own copy of eahee[], i.e. a partial result.

e Final step is reduction, i.e. summing all the partial results in cahee[] to obtain a
final answer.

Code Example - 3

// Reduction (even number of threads assumed)
int i = blockDim.x/2;
while (i != 0){
if (cacheIndex < i)
cache[cacheIndex] += cachelcacheIndex + i]; |«—— Pgrallel reduction

__syncthreads();

i/=2;
}
Wri] h h dId @
0% (onchaToden oo gy T e Finally, write the final answer, with
clblockIdx.x] = cachel[@]; one thread (Seria|)_

Parallel reduction:

(Not the best one!) BlockDim = 8

Repeat for BlockDim/2
» (i/=2); while (i!=0)

