
Introduction to HPC Resources and Linux
Scientific Computing Consultant

Sharon Solis
Enterprise Technology Services &

Center for Scientific Computing
Elings 3229

swsolis@ucsb.edu

http://www.ets.ucsb.edu/services/supercomputing

http://csc.cnsi.ucsb.edu

Paul Weakliem
California Nanosystems Institute &

Center for Scientific Computing
e-mail: weakliem@cnsi.ucsb.edu

Elings 3231

Fuzzy Rogers
Materials Research Laboratory &
Center for Scientific Computing

e-mail: fuz@mrl.ucsb.edu
MRL

Overview
Most research now involves some form of computing

O"en	you’re	solving	equa2ons,	or	analyzing	data/doing	sta2s2cs 	(‘data	science’).		
Engineers	o"en	will	model	a	device.	

Some	specific	examples:	

Protein	Folding		
Structure	of	a	crystal	
How	a	molecule	behaves	on	the	surface	
How	well	will	an	antenna	of	a	certain	size	and	shape	work	

Searching	for	paLerns	in	DNA		
Predic2ng	the	spread	of	wildfires		
Weather	predic2on	

What	factors	have	a	strong	influence	on	poverty	

Like	many	parts	of	research,	you	o"en	start	small,	with	a	simple	idea,	but	it	grows	beyond	what	you		
(or	your	computer)	can	do	yourself!	

Solutions:	 BeLer	computer	
Mul2ple	computers	(HPC)	
Cloud	(Can	be	both	of	above,	with	arbitrary	size)	–	somebody	else’s	computer!	

• What is High Performance Computing (HPC)?

High Performance Computing (HPC) allows scientists and engineers
to solve complex science, engineering, and business problems using
applications that require high bandwidth, enhanced networking,
and very high compute capabilities. From: https://aws.amazon.com/hpc/

•  Multiple computer nodes connected by a very fast interconnect
•  Each node contains many CPU cores (around 12-40) and 4-6GB/core
•  Allows many users to run calculations simultaneously on nodes
•  Allows a single user to use many CPU cores incorporating multiple nodes
•  Often has high end (64 bit/high memory) GPUs

UCSB provide access and support for multiple HPC resources and
educational/training/research support.

HPC	is	not	always	the	right	solu3on!!!!	
•  Some2mes	you	need	a	fast	desktop	worksta2on	(if	there’s	lots	of	interac2on	with	the	program,	and	single	 runs)	
•  Some2mes	‘Cloud’	is	the	right	solu2on	(need	1,000	nodes,	but	only	once	every	3	months)	
•  Some2mes	you	might	even	need	your	own	cluster.........	
•  HIIPPA	data	

Overview

What resources are available at UCSB?
•  UCSB Center for Scientific Computing (CSC) HPC clusters

•  Access to all UCSB staff, free (knot) and condo clusters (braid)
•  Knot cluster (2011) and Pod Cluster (2018)

•  Nautilus cluster (consumer GPUs) - hLps://nau2lus.op2puter.net/	

•  Extreme Science and Engineering Discovery Environment (XSEDE) Project
funded by NSF. Access to national resources. Free*

•  Triton Shared Computing Cluster (TSCC) at San Diego
Supercomputing Center (SDSC)

Mostly used for education/training and class support

•  Aristotle Cloud (LSIT) www.aristotle.ucsb.edu
Local cloud resource, e.g. jupyter hub instances

•  Library Collaboratory (2’nd Floor Library/new section)
Home for data-centric research support (e.g. humanities)

•  SCRE
Secure Compute Research Env.

•  Other discipline specific UCSB resources,
NCEAS, ERI, ECI, your local department

http://csc.cnsi.ucsb.edu/resources

HPC systems at CSC
Campus available cluster Knot (CentOS/RH 6):

110 node, ~1400 core system
4 ‘fat nodes’ (1TB RAM)
GPU nodes (12 M2050’s) (now too old)

Campus available cluster Pod (CentOS/RH7):
70 node, ~2600 core system
4 ‘fat nodes’ (1TB RAM)
GPU nodes (3) (Quad NVIDIA V100/32 GB with NVLINK)
GPU Development node (P100, 1080Ti, Titan V)

Published papers should acknowledge CSC
Request access: http://csc.cnsi.ucsb.edu/acct

Condo clusters: (PI’s buy compute nodes)
• Guild (60 nodes)
• Braid (120 nodes, also has GPUs)
PIs buy nodes in the clusters, CSC handles infrastructure

Using HPC Clusters and Basic Linux
(examples on Pod / Knot)

http://csc.cnsi.ucsb.edu/docs/getting-started

Reminder - What is a ‘cluster’?

It’s just a bunch of computers – but with high speed networks.

Login node (‘pod’) is just a single computer – all the jobs can’t run there!

Your ‘home’ directory is visible on all nodes (XSEDE often uses ‘workspace’)
(to your jobs, all nodes look alike)

Biggest change is you’re using the command line!!!

Access (terminal)
For Linux, Mac, Win10, open a terminal window

Mac: Applications/Utilities/Terminal

Windows 10: PowerShell

$ ssh username@pod.cnsi.ucsb.edu

Important: Remote (non UCSB) login via VPN client:

http://www.ets.ucsb.edu/services/campus-vpn/get-connected

Access	(Graphics)	–	not	usually	needed	
Mac, Need XQuartz

Windows, XMing

$ ssh –X username@pod.cnsi.ucsb.edu

Or	x2go	

Let’s open a connection to Pod, or Knot.

Some basic commands

pwd (what directory (Folder) are we in?) ls (list files)

more (show file, one page at a time) tail (show

end of file)
head

‘nano’ (editor) (also ‘emacs’ or ‘vi’)

We'll	concentrate	on	Pod,	rather	than	knot	in	this	class	

File Transfer
For Linux , Mac, Win10, open a terminal/powershell, use scp or rsync commands:
E.g. Copy file.txt from your computer to your home directory on Knot

scp file.txt user@knot.cnsi.ucsb.edu:file_copy. txt

GUI based (Windows 7 has no command line scp) :

https://filezilla-project.org/ (Both Windows and Mac)

https://winscp.net/eng/download.php (WinSCP for Windows)

https://cyberduck.io (Cyberduck, for Mac and Windows 10)

Globus is another option (all operating systems). Preferred for large files transfers.

http://csc.cnsi.ucsb.edu/docs/globus-online

Storage
Not unlimited - Each dollar spent on storage is one not spent on compute

/home – active working files (Pod - /scratch – high speed, temp files)

/csc/central – files that aren’t immediately needed, but want close by (not
visible to compute nodes).

You can move files up to Google (unlimited storage!) at a rate of about
0.5TB/day, if you make them into archives (order of a TB is good size).
https://csc.cnsi.ucsb.edu/docs/copying-files-google-google-drive
Example: Have some directory ‘finished-data’

tar czf – finished-data > finished-data.tgz
rclone copy finished-data.tgz Google: (and make sure PI is co-owner)

For NSF archival requirements, either public repositories (PDB,
DataOne), or locally, the library Data Collective.

Types of processing
Serial – data is dependent on previous operation,
so single thread
•  parameter sweeps (need to do 1,000 runs at

different values of T)

Parallel – problem can be broken up into lots of pieces

(Tom Sawyer and painting the fence)

There are different kinds of parallel,

•  Embarrassingly parallel – independent runs (e.g. Monte Carlo)
•  Grids – problem broken down into nearby areas that interact

Speed of communication between processes (bandwidth, and latency)
•  Single node (up to 24 or 40 cores, low latency)
•  Multiple nodes (essentially infinite cores, higher latency)

Running Jobs

short submit.job)

#!/bin/bash -l
#SLURM --nodes=1 –ntasks-per-node=10
#SLURM --time=0:30:00
#SLURM --mail-type=start,end
#SLURM --mail-user=weakliem@ucsb.edu
cd $SLURM_SUBMIT_DIR

./a.out
or, more complex…
mpirun -np $SLURM_NTASKS ./run.x
sbatch submit.job (or to test ‘sbatch –p

•  When you login to Pod (or any other cluster), you are on the login node This node is
NOT for running calculations!

•  All jobs must be submitted to the queue – it just allocates nodes (slurm, PBS/Torque)
•  Submission to the queue requires a script to be written

Example Slurm job submission script - (submit.job):

Let’s run a couple of jobs (on Pod (Slurm))

cd to the directory I need.

cat the job batch.job

Submit it, ‘sbatch -q short batch.job’

showq

squeue –u $USER

What’s the output?

What's a typical (easy!) workflow?

Working on computer at home...save file.

Use file transfer program (drag and drop) to move files to cluster

Submit job/monitor job on cluster.

Use file transfer program to drag back results, and analyze locally

Repeat!!

•  You're	most	familiar	with	your	own	computer	
•  Much	of	what	you	do	is	manipula2ng	the	data	you	generated	on	the	cluster	
•  Soooo.....	Let's	mainly	use	your	own	computer!	

Running Jobs on Pod (Slurm)

Check status of the running jobs: $ showq
$ squeue -u $USER

Delete a running job: $ scancel job_id

More options for Slurm:

hLps://www.rc.fas.harvard.edu/resources/documenta2on/convenient-slurm-commands/	

Available queues:
•
•
•

Short queue: $ sbatch –p short submit.job
Large memory queues : $ sbatch –p largemem submit.job
GPU queue: $ sbatch –p gpu submit.job

Start a job: $ sbatch filename.job

Note one big changes from Torque to Slurm is that in Torque it’s “queues” and in
slurm it’s “partition”, so your submit should be with –p, not –q, in slurm.

Running Jobs on Knot (Torque)

Check status of the running jobs: $ showq
$ qstat -u $USER

Delete a running job: $ qdel job_id

More options for PBS:

https://www.olcf.ornl.gov/kb_articles/common-batch-options-to-pbs/

Available queues:
•
•
•

Short queue: $ qsub -q short submit.job
Large memory queues : $ qsub -q (x)largemem submit.job
GPU queue: $ qsub -q gpuq submit.job

Start a job: $ qsub filename.job

Be aware on Knot – the queue allocates you the nodes and the cores, but you need
to make sure you are using the correct number of cores!

e.g. don’t ask for ppn=2 and then mpirun –np 12 since you may share the node

Fairshare/Resource sharing
You can’t monopolize cluster - limit jobs/cores

Where is Package X??? Modules

module avail
module load lumerical
module load intel/18

If no module (knot) - most software is stored in /sw

e.g.	/sw/Ansys,	or	/sw/chem	
Add	to	path	in	.bashrc	or	.bash_profile	

Or	use	full	path,	
/sw/cnsi/lumerical/fdtd/bin/fdtd-solu2ons	

Software, continued
You can install your own software too, e.g. download/configure/make
just install in /home/$USER/somedirectory

Common ways to get software are: ‘github’, ‘wget’
Revision control – github (e.g. https://github.com/ArcticaProject/nx-libs)
Campus now has site license for it (private repos, etc.) see
hLps://github.com/ucsb/github-guide	

git	clone	hLps://github.com/pweakliem/BookSample.git	

 Command line - ‘subversion’ if you want local copies, e.g.
svnadmin create /home/pcw/svn/myproj-1
svn import /home/pcw/SiGe-code file:///home/pcw/svn/myproj-1

Now can check out copies/edit/check in and have all revisions
svn checkout file:////home/pcw/svn/myproj-1

[pcw@pod-login1	class]$	wc	don-big.log	
3497	22462	222558	don-big.log	

18	cycles	
[pcw@pod-login1	class]$	grep	SCF	don-big.log	
SCF	Done:		E(RPBE1PBE)	=		-1299.71733732 	A.U.	a"er	

Popula2on	analysis	using	the	SCF	density.	
SCF	Done:	 E(RPBE1PBE)	=	 -1299.73486337	 A.U.	a"er	 15	cycles	
SCF	Done:	 E(RPBE1PBE)	=	 -1299.75383101	 A.U.	a"er	 15	cycles	
SCF	Done:	 E(RPBE1PBE)	=	 -1299.76854482	 A.U.	a"er	 15	cycles	

[pcw@pod-login1	class]$	grep	"SCF	Done"	don-big.log	
SCF	Done:	 E(RPBE1PBE)	=	 -1299.71733732	 A.U.	a"er	 18	cycles	
SCF	Done:	 E(RPBE1PBE)	=	 -1299.73486337	 A.U.	a"er	 15	cycles	
SCF	Done:	 E(RPBE1PBE)	=	 -1299.75383101	 A.U.	a"er	 15	cycles	
SCF	Done:	 E(RPBE1PBE)	=	 -1299.76854482	 A.U.	a"er	 15	cycles	

[pcw@pod-login1	class]$	grep	"SCF	Done"	don-big.log	|	awk	'{print	$5;}'	
-1299.71733732	
-1299.73486337	
-1299.75383101	
-1299.76854482	

[pcw@pod-login1	class]$	grep	"SCF	Done"	don-big.log	|	awk	'{sum+=$5}	END	{print	 sum};'	
-5198.97	

Extracting Information
Power	of	command	line	is	that	you	can	quickly	look	at	info,	even	while	job	is	running	

More example usage of Linux Commands
Pipes	and	redirects…	

[pcw@pod-login1	class]$	grep	"SCF	Done" 	don-big.log	|	awk	'{print	$5;}‘	>	mydata.dat	

Can	use	GUI	to	analyze	run	data,	e.g.	MatLab	

mkdir : make directory
head/tail : Display beginning/end of file
cd : Change directory
cat [file] : view file
grep [pattern] [file] : Find matching patterns in a file
cut : Get a piece of string
| : Pipe, connecting commands
> and >> : Redirect and append

Scripting
Scripts	string	a	bunch	of	commands	together.	

Example: 	Search	for	final	energy	in	a	file	
#!/bin/bash	
for	i	in	$(ls	data.??);	do		

echo	$i	>>	summary.file	
grep	“SCF	Done”	$i	>>	summary.file		

done	

Torque/Slurm job files are just scripts…

#!/bin/bash	
for	i	in	$(seq	1	12);	do	
./serial-executable	<	inputfile.$i 	&		
done	
wait	

Appendix

Some useful linux commands

ls [-option] : list files
mkdir : make directory
cd : change directory
man : display manual for a command
mv : mv file/folder
rm [-r] : remove file. -r to remove folders
pwd : present working directory
cat [file] : view file
less /more : view file, one screen at a time
grep [pattern] [file] : Find matching patterns in a file

Pipes and redirection

command > file : Redirect output of command to file

command >> file : Append output of command to file

command < file1 > file2 : Get input from file1, write output to file2

command1 | command2 : Join command1 & command2

You will come across this a lot with job files, e.g. to run a python script, or
Matlab, or ….

e.g. python < myinput.py

Common shortcuts

* : Wildcard

~ : Home directory

. : Current directory

.. :One directory up

TAB key: Finish commands, good for typing fast

Up arrow key – previous commands

Creating/Extracting Archives

Suppose you have an archive: package.tar.gz

Extract: $ tar -xzvf package.tar.gz

Suppose you have files you want to collect together: file1, …, file10

$ tar czf file1 file2 .. file10 package.tar.gz

Questions?

What else should we have covered?

Other ideas for a class?

