
Matlab with HPC
Burak Himmetoglu

ETS & CSC
bhimmetoglu@ucsb.edu

11/17/2016

mailto:bhimmetoglu@ucsb.edu?subject=

Question: My Matlab solution is taking too long on
my computer, what can I do?

Possible answers:

• Try parallel computing toolkit
• Run your Matlab in a remote cluster

• Large data that don’t fit your computer’s memory
• Divide and Conquer

• Port your code to C/C++

Matlab on a remote computer cluster

• Almost all computer clusters run Linux
• For long calculations, you cannot use the IDE
• Need to be submitted to a queuing system

• Submit many calculations simultaneously!
• Access to a large memory (> 40 GB, up to 1 TB)

Some (potential) drawbacks

Advantages

Examples in this seminar

If you have an account on Knot:
export PATH=“/sw/MatLab/R2016b/bin:$PATH”

Download the exercises from the command line:
svn checkout https://github.com/bhimmetoglu/talks-and-

lectures/trunk/CSC-UCSB

All exercises are online:
https://github.com/bhimmetoglu/talks-and-lectures

https://github.com/bhimmetoglu/talks-and-lectures/trunk/CSC-UCSB
https://github.com/bhimmetoglu/talks-and-lectures

Run Matlab code on Knot cluster
• Remember: No IDE for long calculations!
• Make sure that your code runs from start to end
• Perform tests on your computer first

#!/bin/bash
#PBS -l nodes=1:ppn=12
#PBS -l walltime=01:00:00
#PBS -N Pi
#PBS -V

cd $PBS_O_WORKDIR

matlab -nodisplay -nodesktop -nosplash < calculate_pi.m > out

A simple script (text file) can be used to submit to the queue:

qsub submit.job

Let’s say that the name of the script is: submit.job

Better use the short queue, since this is a test job < 1 hr

qsub -q short submit.job

Check status:

showq -u $USER

Run Matlab code on Knot cluster

Example 1: Calculate pi in parallel

lab: i lab: nlab: 1

⇡ =

Z 1

0

4

1 + x

2
dx

• Each “lab” (parallel thread) will compute the area of a
trapezoid.

trapez.m

Example 1: Calculate pi in parallel
• Create parallel regions in your code

• E.g.: spmd

% Start parallel region
spmd
 loc_a = (labindex -1)/numlabs; % labindex & numlabs are variables generated once spmd is called
 loc_b = labindex / numlabs;
 fprintf('Lab %d integrates oves [%f, %f] \n', labindex, loc_a, loc_b);
end
% End parallel region

• Work in parallel regions will be distributed across cores
• There is an overhead of launching parallel “labs”
• Performance gain is usually observed for jobs that run long

enough

% Start parallel region
spmd
 x = linspace(loc_a,loc_b,n); % Divide the local region into n intervals
 fx = f(x); % Get the values of the function on this sequence
 % Trapezoidal rule
 loc_result = (loc_b - loc_a) / 2.0 / (n-1) * (fx(1) + fx(n) + 2 * sum(fx(2:n-1)));
 fprintf (' Lab %d obtained: %f\n', labindex, loc_result);
end
% End parallel region

Example 1: Calculate pi in parallel

• Compute the area of the local trapezoid for each “lab”

• Reduction: Collect results from all labs and add them up

% Start parallel region
spmd
 tot_result = gplus(loc_results);
end
% End parallel region

Example 2: Monte Carlo integral in parallel
spmd vs parfor

Z =

Z 1

0

Z 1

0
. . .

Z 1

0
dx1 dx2 . . . dx

n

e

�x

2
1�x

2
2�···�x

2
n

Monte Carlo integration:

Pick randomly
Z (Volume of region) x (Integrand at){x1, x2, . . . , xn}

For (i = 1, NumSimulations){

}
Average results (Z’s)

run_mcarlo_*.m

{x1, x2, . . . , xn}

Example 2: Monte Carlo integral in parallel

• Each “lab” runs a number of simulations for its own integral
• At the end, results from each lab averaged.

a) spmd

a) parfor

• The for loop over simulations are distributed across “labs”
• The distribution is automatic

% Start parallel region by parfor: Work will be divided automatically
parfor i = 1:nSim
 [v1, v2] = monteCarlo(nDim);
 z = z + v1;
 s2 = s2 + v2;
end
% End parallel region

Spmd vs parfor

• Parfor is much easier.
• Parfor determines potential issues (like race conditions)

and will run serial if necessary.

• Spmd is more flexible, and allows more user control
• Careful code modification is usually necessary
• Race conditions?

Resources for Learning Matlab

• Coursera : https://www.coursera.org/learn/matlab
• LeanPub: https://leanpub.com/rprogramming
• Lynda : Up and Running with Matlab

https://www.coursera.org/learn/matlab
https://leanpub.com/rprogramming

