
R with HPC
Burak Himmetoglu

ETS & CSC
bhimmetoglu@ucsb.edu

11/03/2016

mailto:bhimmetoglu@ucsb.edu?subject=

Things you can do with R (+RStudio)

Computational (base R + libraries)
• Statistics
• Simulations
• Data Analysis
• Predictive analysis, machine learning
• …

All other cool stuff (RStudio)
• Projects (R packages, Github, …)
• Web pages, presentations (Knitr, …)
• Web applications (Shiny,…)
• …

Question: My R solution is taking too long on my
computer, what can I do?

Possible answers:

• Use specialized packages for performance 😀
• Try simple (shared memory) parallel tools 😀
• Run your R code in a remote cluster 😀/😐

• Large datasets that don’t fit your computer’s memory
• Divide and Conquer

• Try (distributed memory) parallelism, or Hadoop
solutions 😬/😱

• Write C/C++ extensions for R 😬/😱

R on a remote computer cluster

• Almost all computer clusters run Linux 😎/😩
• You can’t use RStudio interactively on a cluster 😩
• Need to be submitted to a queuing system 😕

• Fire and forget: Submit many calculations!
• Access to a large memory (> 40 GB, up to 1 TB)

Possible drawbacks

Advantages

Examples in this seminar

If you have an account on Knot:
export PATH=“/sw/csc/R-3.2.3/bin:$PATH”

Download the exercises from the command line:
svn checkout https://github.com/bhimmetoglu/talks-and-

lectures/trunk/CSC-UCSB

All exercises are online:
https://github.com/bhimmetoglu/talks-and-lectures

https://github.com/bhimmetoglu/talks-and-lectures/trunk/CSC-UCSB
https://github.com/bhimmetoglu/talks-and-lectures

Example 1: Run R code on Knot cluster

Z =

Z 1

0

Z 1

0
. . .

Z 1

0
dx1 dx2 . . . dx

n

e

�x

2
1�x

2
2�···�x

2
n

Monte Carlo integration:

Pick from a uniform distribution
Z (Volume of region) x (Integrand at){x1, x2, . . . , xn}

For (i = 1, NumSimulations){

}
Average results (Z’s)

montecarlo.R

{x1, x2, . . . , xn}

Example 1: Run R code on Knot cluster
• Remember: No RStudio to experiment with!
• Make sure that your R code runs from start to end
• Perform tests on your computer first

#!/bin/bash
#PBS -l nodes=1:ppn=12
#PBS -l walltime=01:00:00
#PBS -N MonteCarlo
#PBS -V

cd $PBS_O_WORKDIR

Rscript --vanilla montecarlo.R > output

A simple script (text file) can be used to submit to the queue:

Example 1: Run R code on Knot cluster

qsub submit.job

Let’s say that the name of the script is: submit.job

Better use the short queue, since this is a test job < 1 hr

qsub -q short submit.job

Check status:

showq -u $USER

Example 2: Titanic Survival Prediction

P (Survived) ' 0.74P (Survived) ' 0.19
Jack: Rose:

Prediction purely based on gender

https://www.kaggle.com/c/titanic

https://www.kaggle.com/c/titanic

Example 2: Titanic Survival Prediction

Importance of using R packages that replace base R functions

e.g.: dplyr, readr • Written in C++, fast, easy to use
• Use them on cluster and on your computer

Importance of using parallel capabilities already encoded

e.g. : glmnet • Shared memory parallelizm implemented
• Take advantage of it!

This example illustrates:

Why dplyr?
Proportion of survived passengers by gender

P_Surv_M <- sum(train[train$Sex == "male",]$Survived)/length(train[train$Sex == "male"])

P_Surv_F <- sum(train[train$Sex == "female",]$Survived)/length(train[train$Sex == "female"])

Base R way:

dplyr way:

train %>% group_by(Sex) %>% summarize(survivalRate = sum(Survived == TRUE)/n())

• Intuitive
• Efficient and fast
• Less memory
• Complicated chain of tasks in a simple line of code

Why dplyr?

Model Matrices
• We need to convert all factor variables into numeric ones
• In general, values cannot be compared
• E.g. States in U.S, Gender, City etc.

Id Pclass Age

1 1 45

2 2 50

3 2 22

4 3 18

5 1 65

6 2 34

Id Pclass2 Pcalss3 Age

1 0 0 45

2 1 0 50

3 1 0 22

4 0 1 18

5 0 0 65

6 1 0 34

model.matrix()
sparse.model.matrix()

Logistic Regression

ypred, i =
1

1 + e�zi
zi = �0 + �T

1 · xi

• Linear model for classification

Survived

X0

1

Survived

X0

1

1/2

• Parameters optimized to yield small error
• Overfitting problem: LASSO and Ridge regression
• by cross-validation (parallel part in glmnet)

Logistic Regression (Regularization)

�0,�1

↵,�

min
�0,�

1

N

NX

i=1

l(yi,�0 + �

T
xi) + �

⇥
(1� ↵)||�||22/2 + ↵||�||1

⇤

This is the optimization problem:

Functions to use:
cv.glmnet() # Determines by cross-validation
glmnet() # Determines by optimization

�

�0,�1

Example 3: Flip coins and aggregate results

• Testing parallel performance in a simple experiment
• Flip 100 coins for 10,000 times, store results in a table
• Look at the script coinFlips.R

foreach package

coinFlips <- matrix(0, nrow = nSim, ncol = nSpin)
coinFlips <- foreach(i=1:nSim, .combine = rbind) %dopar%
 (rbinom(n = nSpin, size = 1, prob = 0.5))

coinFlips <- matrix(0, nrow = nSim, ncol = nSpin)
coinFlips <- foreach(i=1:nSim, .combine = rbind) %do%
 (rbinom(n = nSpin, size = 1, prob = 0.5))

nSim = 1e+5; nSpin = 100

More Exercises

Compare the timing in the scripts:

1. montecarlo.R
2. montecarloSer.R
3. montecarloPar.R

Which one runs the fastest and why?

Resources for learning R

• swirl package
• Coursera : https://www.coursera.org/learn/r-programming
• LeanPub: https://leanpub.com/rprogramming
• Lynda : Up and Running with R

Introduction to Statistical Learning
with applications in R

http://www-bcf.usc.edu/~gareth/ISL/

https://www.coursera.org/learn/r-programming
https://leanpub.com/rprogramming
http://www-bcf.usc.edu/~gareth/ISL/

Resources for high performance computing with R

• Rcpp
• data.table
• snow, Rmpi
• H2O
• RHadoop
• Rhipe
• …

https://cran.r-project.org/web/views/HighPerformanceComputing.html

Packages:

https://cran.r-project.org/web/views/HighPerformanceComputing.html

