
Apptainer / Singularity
Containers

On the Clusters

W00t! UC Santa Barbara!

Paul Weakliem, PhD
Co-Director

Center for Scientific Computing &
California Nanosystems Institute

Eling 3231
weakliem@cnsi.ucsb.edu

Fuzzy Rogers
That guy in the MRL

Center for Scientific Computing &
Materials Research Laboratory

MRL 2066B
fuz@ucsb.edu

Yu-Chieh “Jay” Chi, PhD
Research Computing Consultant
Center for Scientific Computing &
Enterprise Technology Services

Elings 3229
jaychi@ucsb.edu

Ye Olde People Introductions

mailto:weakliem@cnsi.ucsb.edu
mailto:fuz@mrl.ucsb.edu
mailto:jaychi@ucsb.edu

Ack!

• Acknowledgements - https://csc.cnsi.ucsb.edu/publications

Please acknowledge the CSC in publications and presentations if
you are using our facility’s computational resources (including staff
involvement) in your research.

“We acknowledge support from the Center for Scientific Computing
from the CNSI, MRL: an NSF MRSEC (DMR-1720256) and NSF
CNS- 1725797.”

Caveat Emptor

Here is where I absolve myself from all blame by stating that the soon to be
aforementioned was to the best of my knowledge.

What is this thing you call a
container?

• Containers are linux software environments where the user can have control
over everything but the kernel.

• Apptainer / Singularity containers can be used to package entire scientific
workflows, software and libraries, and even data, in an immutable format. This
means that you don’t have to ask your cluster admin to install anything for you -
you can create a software workflow in a Apptainer / Singularity container and run it
on the clusters.

• With Docker integration, one can utilize proven shared containers as if they were
applications (that can contain multiple applications).

Apptainer / Singularity on Pod

● https://apptainer.org/docs/user/latest/ ←- docs and info
● module load apptainer

(or singularity/3.5.2 or singularity/2.6)
● Binaries of apptainer and singularity (and their

builds) are in /sw/singularity
● Images are created by ‘Definition’ (.def) files

and are very bare bones - you need to ask for
the packages you want installed

● The resulting image files (.sif) are immutable

Such an immutable kitty!

The one command to
execute.

https://apptainer.org/docs/user/latest/

Apptainer & Docker

● Apptainer can pull and transmogrify docker containers to create a .sif
(singularity image format) file/image
apptainer pull docker://ghcr.io/apptainer/lolcow

…exciting things happen …
INFO: Converting OCI blobs to SIF format
INFO: Starting build...
Getting image source signatures
Copying blob 5ca731fc36c2 done
Copying blob 16ec32c2132b done
Copying config fd0daa4d89 done
Writing manifest to image destination
Storing signatures
2023/02/08 14:37:49 info unpack layer:
sha256:16ec32c2132b43494832a05f2b02f7a822479f8250c173d0ab27b3de78b2f058
2023/02/08 14:37:50 info unpack layer:
sha256:5ca731fc36c28789c5ddc3216563e8bfca2ab3ea10347e07554ebba1c953242e
INFO: Creating SIF file…

Apptainer & Docker
● Look at the SIF

-bash-4.2$ ls -lh
…
-rwxr-xr-x 1 fuz seshadri 72M Feb 8 14:37 lolcow_latest.sif

● Run the container with input from the outside and then exit back to CentOS 7
Pod:
-bash-4.2$ apptainer exec lolcow_latest.sif cowsay moo

< moo >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

<- Clarus the Dogcow
1983, Apple (not created by the
container)

Program to run in container Input for that program

←– the output

Apptainer & Docker
● -bash-4.2$ apptainer exec lolcow_latest.sif cowsay moo

-bash-4.2$ apptainer run lolcow_latest.sif cowsay moo

-bash-4.2$ apptainer run lolcow_latest.sif cowsay

< Sat Feb 11 13:22:51 PST 2023 >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||
-bash-4.2$ apptainer exec lolcow_latest.sif cowsay moo

< moo >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Runs the commands under %runscript in the .def
(Definition) file - a bit of a black box if you cannot see
how the container was defined.

exec just executes the program in the
container with the input from the end

This command will launch an Apptainer container and execute a runscript if
one is defined for that container. The runscript is a metadata file within the
container that contains shell commands. If the file is present (and
executable) then this command will execute that file within the container
automatically. All arguments following the container name will be passed
directly to the runscript.

That’s a cat.
That’s a cow.

Apptainer & Docker

Let’s look a bit at our .sif image - we can shell into it:
-bash-4.2$ apptainer shell lolcow_latest.sif
Apptainer>
Apptainer> cat /etc/debian_version
bullseye/sid
Apptainer> df -h
Apptainer> which cowsay
/usr/games/cowsay
Apptainer> set | grep games ←—-- ‘set’ shows your environment variables
PATH=/usr/games:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
Apptainer> exit

Filesystem Size Used Avail Use% Mounted on
overlay 16M 12K 16M 1% /
devtmpfs 94G 0 94G 0% /dev
tmpfs 94G 19M 94G 1% /dev/shm
/dev/md126 437G 128G 309G 30% /tmp
beegfs_nodev 655T 569T 87T 87% /home/fuz
tmpfs 16M 12K 16M 1% /etc/group

Apptainer & Docker
● Can mount other filesystems with the –bind flags:

apptainer shell --bind /scratch,/sw lolcow_latest.sif
Apptainer> df -h

● Not everything you find in Docker easily turns into a .sif - just because you
find a docker website with what you want does not mean it will be ‘easy’ to
make an apptainer out of it. If you have docker installed, then you can try
your hand at making an image and porting it over.
For instance: https://hub.docker.com/r/nvaitc/ai-lab

Filesystem Size Used Avail Use% Mounted on
overlay 16M 12K 16M 1% /
devtmpfs 94G 0 94G 0% /dev
tmpfs 94G 19M 94G 1% /dev/shm
/dev/md126 437G 128G 309G 30% /tmp
beegfs_nodev 655T 569T 87T 87% /home/fuz
tmpfs 16M 12K 16M 1% /etc/group
10.0.50.249:/scratch 19T 8.4T 9.9T 46% /scratch
10.0.50.254:/sw 3.5T 1.8T 1.6T 53% /sw
/dev/loop0 72M 72M 0 100% /sw/singularity/apptainer/var/apptainer/mnt/session/rootfs

https://hub.docker.com/r/nvaitc/ai-lab

Building an Apptainer

● You can build your very own .sif container using .def files with all the packages you
want that exist in base repositories (maybe non-base too, haven’t looked much)

-bash-4.2$ more fuzcontainer.def
BootStrap: docker
From: ubuntu:20.04
%post
 apt-get -y update
 apt-get -y install cowsay vim bc python3
%environment
 export LC_ALL=C
 export PATH=/usr/games:$PATH
%runscript
 date | cowsay
%labels
 Author Fuz

Let’s try vim in lolcow_latest.sif
bash-4.2$ apptainer shell --bind /scratch,/sw lolcow_latest.sif
Apptainer> vim
bash: vim: command not found

Now with fuzcontainer.sif
-bash-4.2$ apptainer shell --bind /scratch,/sw fuzcontainer.sif
Apptainer> vim

Build the .def with:
apptainer build fuzcontainer.sif fuzcontainer.def

I’ve chosen to install vim. Is an
editor necessary? Probably not.
But, you’ll be surprised what isn’t
installed by default.

Pipe ‘date’ into cowsay - when run’d, this is what it runs

← Obsequious cat

Building an Apptainer
Let’s play with the %runscript … what if I go… (modifying my .def file)
%runscript
 date | cowsay
 df -h | cowsay
 bc < bcinput

Build it … apptainer build fuzcontainer-bc.sif fuzcontainer.def

-bash-4.2$ cat bcinput
7 * 3.000482469859387459872934923

-bash-4.2$ apptainer run fuzcontainer-bc.sif

< Mon Feb 13 10:11:36 PST 2023 >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

/ Filesystem Size Used Avail Use% Mounted \
| on overlay 16M 12K 16M 1% / devtmpfs |
| 94G 0 94G 0% /dev tmpfs 94G 19M 94G 1% |
| /dev/shm /dev/md126 437G 139G 298G 32% |
| /tmp beegfs_nodev 655T 571T 85T 88% |
| /home/fuz tmpfs 16M 12K 16M 1% |
\ /etc/group /

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||
21.003377289015712219110544461

Building an Apptainer
● You can build from Dockerfiles - but you gotta translate into apptainer syntax

https://apptainer.org/docs/user/1.0/docker_and_oci.html#apptainer-definition-file-vs-dockerfile
Here’s the Dockerfile for BioPython

FROM ubuntu:16.04
MAINTAINER Tiago Antao <tra@popgen.net>

ENV DEBIAN_FRONTEND noninteractive
#We need this for phylip
RUN echo 'deb http://archive.ubuntu.com/ubuntu xenial multiverse' >> /etc/apt/sources.list \

 && apt-get update \
 && apt-get upgrade -y --force-yes \
 && apt-get install -y --force-yes \

 build-essential \
 git \
 python3-numpy \
 wget \
 gcc \
 g++ \
 python3-dev \
 unzip \
 make \
 python3-matplotlib \
 python3-reportlab \
 python3-pip r-base \
 clustalw \
 fasttree \
 t-coffee python3-pil \
 bwa \
 ncbi-blast+ \
 emboss \
 clustalo \
 phylip \

 mafft \
 muscle \
 samtools \
 phyml \
 wise \
 raxml \
 language-pack-en \
 paml \
 probcons \
 python3-pandas \
 python3.5-dev \
 libxft-dev \
 && apt-get clean

#for Phylo_CDAO
RUN pip3 install pip --upgrade
RUN pip3 install rdflib --upgrade \
 && pip3 install cython --upgrade \
 && pip3 install numpy --upgrade \
 && pip3 install Pillow --upgrade \
 && pip3 install matplotlib --upgrade \
 && pip3 install pandas --upgrade

#Manual software
RUN echo "export DIALIGN2_DIR=/tmp" >> .bashrc
… and it goes on and on and on

Turning this, by hand, into a modified BioPython .def would be a long process
Nicer to …. apptainer pull docker://biopython/biopython
But then you don’t have any customization

https://apptainer.org/docs/user/1.0/docker_and_oci.html#apptainer-definition-file-vs-dockerfile

Apptainer & GPUs
● Apptainer plays nicely with Pod’s GPUs - use the development node pod-gpu

for testing
● –nv (2 hyphens)
● Remember to send SLURM job file

to gpu: sbatch -p gpu mygpustuff.job
● Apptainer is better than Singularity for interaction with GPUs

nv - the UCSB Jayich diamond research -
https://www.10-9lab.com/spin-coherence/ (actually it
stands for nvidia, not nitrogen vacancy)

Sidebar: So why ever use Singularity? My suggestion is to not use it.
Singularity can give you a writable container, in a relatively easy fashion, that you can manipulate to
your liking. Apptainer can do that to - with the Sandbox function, but once you learn how to do
something, it’s sometimes easier to stick with it. Apptainer creates an entire subdirectory root
filesystem of the container, whereas Singularity keeps it all inside its container.
-bash-4.2$ apptainer build --sandbox ubuntu/ docker://ubuntu
-bash-4.2$ cd ubuntu
-bash-4.2$ ls
bin boot dev environment etc home lib lib32 lib64 libx32 media mnt opt proc root run sbin
singularity srv sys tmp usr var

https://www.10-9lab.com/spin-coherence/

Apptainer & GPUs
As long as we’re sidebarring:
If you already have a container saved locally, you can use it as a
target to build a new container. This allows you to convert containers
from one format to another. For example if you had a sandbox container called ubuntu/
and you wanted to convert it to a SIF container called myubuntu.sif you could:

$ apptainer build myubuntu.sif ubuntu/

Use care when converting a sandbox directory to the default SIF format. If changes were
made to the writable container before conversion, there is no record of those changes in
the Apptainer definition file rendering your container non-reproducible. It is a best
practice to build your immutable production containers directly from an Apptainer
definition file instead.

(shamelessly stolen from: https://apptainer.org/docs/user/main/build_a_container.html)

https://apptainer.org/docs/user/main/build_a_container.html

Apptainer & GPUs
 apptainer pull docker://tensorflow/tensorflow:latest-gpu

apptainer run --nv tensorflow_latest-gpu.sif
Apptainer> python
Python 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>from tensorflow.python.client import device_lib

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named ‘tensorflow'

Ohh? What’s this? Aha - it found the wrong python - it found my anaconda python….
Apptainer> which python
/home/fuz/anaconda3/bin/python

So - let’s use the container’s python that has TF
Apptainer> /bin/python3

Python 3.8.10 (default, Jun 22 2022, 20:18:18)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

from tensorflow.python.client import device_lib
….stuff……….

print(device_lib.list_local_devices())
…..stuff….. Let’s see what the container sees for the GPUs

Important! Your .bashrc may
affect what the container sees.
When you submit a job, you’d
need /bin/python3 mypython.py

Or: Let’s pull a GPU thingy!

Apptainer & GPUs

-> device: 0, name: Tesla V100-PCIE-32GB, pci bus id: 0000:17:00.0, compute capability: 7.0
2023-02-09 12:24:25.069041: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1613] Created device /device:GPU:1 with 13779 MB memory: -> device: 1, name: Tesla T4, pci bus
id: 0000:65:00.0, compute capability: 7.5
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 8336112430592221785
xla_global_id: -1
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 32473874432
locality {
bus_id: 1
links {
}
}
incarnation: 8868894900487111325
physical_device_desc: "device: 0, name: Tesla V100-PCIE-32GB, pci bus id: 0000:17:00.0, compute capability: 7.0"
xla_global_id: 416903419
, name: "/device:GPU:1"
device_type: "GPU"
memory_limit: 14449115136
locality {
bus_id: 1
links {
}
}
incarnation: 14753446127920954602
physical_device_desc: "device: 1, name: Tesla T4, pci bus id: 0000:65:00.0, compute capability: 7.5"
xla_global_id: 2144165316
]

Continuing the output, seeing the GPUs…..

I know! I was surprised too.

This is pod-gpu
login node, FYI

http://gpu_device.cc:1613/

Apptainer & GPUs
● Okay- this is all well and good, but let’s do something SLURMy

In my frantic preparation for this talk I decided to grab the TF “1st grader” example - it’s all Paul’s fault

My SLURM job script:
#!/bin/bash
ask for 1 core on one node and 1 GPU
#SBATCH -N 1 --ntasks-per-node=1
#SBATCH --time=01:00:00
#SBATCH --partition=gpu
#SBATCH --gres=gpu:1

cd $SLURM_SUBMIT_DIR
module load apptainer
hostname
apptainer exec --nv tensorflow_latest-gpu.sif /bin/python3 teras-example.py

My python file (teras-example.py) to run:
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)
])
predictions = model(x_train[:1]).numpy()
predictions) + '\n')
f.nn.softmax(predictions).numpy())
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
loss_fn(y_train[:1], predictions).numpy()
model.compile(optimizer='adam',
 loss=loss_fn,
 metrics=['accuracy'])
model.evaluate(x_test, y_test, verbose=2)
probability_model = tf.keras.Sequential([
 model,
 tf.keras.layers.Softmax()
])
probability_model(x_test[:5])

Agitated cat sees the problem.
Fuzzy did not.

Umm, yeah- this is your friend
If you use GPUs, you’ll need that
flag

Apptainer & GPUs
OUTPUT -
…stuff from finding NV devices ….
TensorFlow version: 2.11.0
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11490434/11490434 [==============================] - 1s 0us/step
2023-02-09 16:19:19.821484: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1613] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 27060 MB
memory: -> device: 0, name: Tesla V100-PCIE-32GB, pci bus id: 0000:17:00.0, compute capability: 7.0
2023-02-09 16:19:19.822409: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1613] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13779 MB
memory: -> device: 1, name: Tesla T4, pci bus id: 0000:65:00.0, compute capability: 7.5
Epoch ⅕
2023-02-09 16:19:27.502094: I tensorflow/compiler/xla/service/service.cc:173] XLA service 0x7f3e84022ba0 initialized for platform CUDA (this does not guarantee that XLA
will be used). Devices:
2023-02-09 16:19:27.502181: I tensorflow/compiler/xla/service/service.cc:181] StreamExecutor device (0): Tesla V100-PCIE-32GB, Compute Capability 7.0
2023-02-09 16:19:27.502222: I tensorflow/compiler/xla/service/service.cc:181] StreamExecutor device (1): Tesla T4, Compute Capability 7.5
2023-02-09 16:19:27.655725: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:268] disabling MLIR crash reproducer, set env var
`MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.
2023-02-09 16:19:29.277989: I tensorflow/compiler/jit/xla_compilation_cache.cc:477] Compiled cluster using XLA! This line is logged at most once for the lifetime of the
process.
1875/1875 [==============================] - 8s 3ms/step - loss: 0.3024 - accuracy: 0.9112
Epoch ⅖
1875/1875 [==============================] - 6s 3ms/step - loss: 0.1465 - accuracy: 0.9573
Epoch ⅗
1875/1875 [==============================] - 4s 2ms/step - loss: 0.1113 - accuracy: 0.9662
Epoch ⅘
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0901 - accuracy: 0.9718
Epoch 5/5
1875/1875 [==============================] - 6s 3ms/step - loss: 0.0759 - accuracy: 0.9766
313/313 - 1s - loss: 0.0813 - accuracy: 0.9760 - 645ms/epoch - 2ms/step

● Looks good - oh wait … none of the function evaluations show up in the output.

https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

Apptainer & GPUs
● Python evaluations are NOT standard out. You want your results? Be sure to

write them (or verify that they go to standard out)
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)
])
predictions = model(x_train[:1]).numpy()
f = open('results.txt','w')
f.write(str(predictions) + '\n')
f.write(str(tf.nn.softmax(predictions).numpy()) + '\n')
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
f.write(str(loss_fn(y_train[:1], predictions).numpy()) + '\n')
model.compile(optimizer='adam',
 loss=loss_fn,
 metrics=['accuracy'])
f.write(str(model.evaluate(x_test, y_test, verbose=2)) + '\n')
probability_model = tf.keras.Sequential([
 model,
 tf.keras.layers.Softmax()
])
f.write(str(probability_model(x_test[:5])) + '\n')

Any python evaluation/function that
outputs, throw it into an f.write

Here- I’m saying - open
results.txt for writing

Skeptical cat is saying - “You’re not labeling your
output! It’s garbage! Put in a
f.write("Predictions!! %d\r\n") or whatever before every
python evaluation! Imbecile!”
But maybe Skeptical cat doesn’t realize I want to take
the ‘unadulterated’ output and process through another
program that would prefer not to have labels like
“Predictions”?

\n = newline (you
probably knew that)

Apptainer & GPUs
-bash-4.2$ more results.txt
[[-0.6788503 0.08507155 0.7489541 -0.3592714 -0.4191291 0.3637312
 0.15091619 0.44977978 0.41373825 0.18217495]]
[[0.04244909 0.09112456 0.17699295 0.05843321 0.05503815 0.12040813
 0.09732657 0.13122791 0.12658247 0.10041693]]
2.1168683
[2.3465797901153564, 0.08789999783039093]
tf.Tensor(
[[0.05063404 0.07061377 0.17750613 0.07071802 0.09076004 0.10206965
 0.13977249 0.08153952 0.09993464 0.11645163]
 [0.04648628 0.08442134 0.07763657 0.08092945 0.08309506 0.12882507
 0.19512239 0.10946266 0.11590897 0.07811217]
 [0.09442651 0.08400892 0.11063591 0.086678 0.09030239 0.09628462
 0.10558278 0.12173646 0.0983725 0.11197192]
 [0.04697128 0.08966808 0.14622916 0.03771305 0.04190792 0.08916441
 0.11697701 0.16301493 0.11301447 0.15533967]
 [0.08090983 0.05662173 0.11566644 0.11236666 0.06174224 0.15317099
 0.16894276 0.09333923 0.08112669 0.07611344]], shape=(5, 10), dtype=float32)

● Voila. Yup. Exactly what I expected. Uh huh. Sure. Well- they are results, whether they mean
anything is a different story.

17 sig figs… useful… if you’re
measuring the diameter of a proton \s

Downloadable images
Especially for GPUs, there are some prebuilt images which are easy to
work with

https://catalog.ngc.nvidia.com/ and, for example, if you search on Gromacs, you get

https://catalog.ngc.nvidia.com/orgs/hpc/containers/gromacs which has a docker image you can download(!!), as
well as some instructions.

apptainer pull gromacs-2022.3.sif docker://nvcr.io/hpc/gromacs:2022.3

and then you can do your usual with your 'gromacs-2022.3.sif' file

cat runfile
 /usr/local/gromacs/avx2_256/bin/gmx mdrun -ntomp 8 -ntmpi 4 -s benchRIB.tpr -nsteps 400

apptainer run --nv gromacs_2022.3.sif < runfile

Will run your gromacs job for ‘benchRIB’.

However…..

https://catalog.ngc.nvidia.com/
https://catalog.ngc.nvidia.com/orgs/hpc/containers/gromacs
http://nvcr.io/hpc/gromacs:2022.3

Security (or beware!)
● Yeah- be careful about any Docker images you find on the internet.

It does not take too much imagination to create a Docker image
called
“Generate my Physics Thesis with ChatGPT”
And, when you run it, it promptly deletes all your files.

● Trusted workflows, from trusted sources - a good start
● Apptainer uses private PGP keys to create a container

signature, and the corresponding public key in order to
verify the container signature. Verification of signed
containers can be done at any time by a user and happens automatically in
apptainer pull commands against Library API registries. The prevalence of
PGP key servers, (like https://keys.openpgp.org/), make sharing and
obtaining public keys for container verification relatively simple. Yup, sure,
you’ll all do that.

Apptainer Instances
The subtitle to this slide is “How to impress a prospective employer to hire you at 6
figures”

● Instances are running containers waiting for interaction
● IMHO - these are not suitable for the clusters
● “Instances allow you to run containers as background processes. This can be

useful for running services such as web servers or databases.”
● I only mention them because they will give you a feel for a cousin cluster

called Nautilus that uses Kubernetes. If you say the word “Kubernetes” in a
job interview, and mention “instances”, and how much you like containers,
you’ll probably get the job.

● https://portal.nrp-nautilus.io/

Making your own Containers
• The Workflow – Step 1 – Build a linux VM so you can be root

• Download and install a Virtual Machine application (I chose VirtualBox)

• For pod.cnsi.ucsb.edu, build a CentOS 7 virtual machine

● Choose your HD size so that it can accommodate your OS *and* your singularity images
that you will create (i.e. 20GBs or so)

● IchoseCentOS-7-x86_64-Everything-1804.isoasthebase
● My favorite mirror is http://mirrors.oit.uci.edu/centos/7/isos/x86_64/
● Remember that you want to install the Development Tools (Compute Node has it on the left)

● Then we’ll download and build singularity as we’ll be root on our own little linux machine.
● And then you can build singularity images to fit your exact needs. Once you’ve tested your

workflow, you can copy those images to pod.cnsi.ucsb.edu and create jobs for them to run.

Caveat: this is old for Singularity

Making your own Containers
• The Workflow – Step 2 – Getting and Building Singularity / Apptainer

• Start your VM from VirtualBox, login as root

• https://github.com/sylabs/singularity/releases - the .tar.gz are fine

● wget https://github.com/sylabs/singularity/releases/download/2.5.2/singularity-
2.5.2.tar.gz

● gunzip that file, untar that file
● cdsingularity-2.5.2
● ./configure –prefix=/singularity (prefix not necessary) Note if configure fails with missing packages – you might need to

yum install somepackagelikegcc
● make - if there are no errors....
● make install
● yum install epel-release , yum install debootstrap

• Voila – you now have singularity in your VM and can create singularity / apptainer containers

Making your own Singularity Containers
• The Workflow – Step 3 – Creating an Ubuntu container

• Build an empty container

● export PATH=$PATH:/singularity/bin
● singularitycreateubuntu.img
● singularityimage.expand–size4000ubuntu.img
● singularitybuildubuntu.img createdeb.def wherecreatedeb.def:

BootStrap: debootstrap
DistType: Debian
MirrorURL: http://us.archive.ubuntu.com/ubuntu

OSVersion: xenial
%runscript
apt-get install python

● singularity shell ubuntu.img ← you’re now in the container (--writable)
● apt-get install python sudo ← and anything else you want to install (might need sudo

for other apt-gets like sudo apt-get install somepackageoranother – so you need sudo)
● Exit ← gets you out the container back into CentOS 7

Next Steps
● Now that you have a container- customize it to work with your workflow. Install

whatever packages you need.
● When you use a container on the clusters, it automatically mounts your home

directory.
● The container sees all of the system’s memory and CPUs, but none of the other

filesystems/directories unless you explicitly mount them – and then they’re generally
readonly unless it’s /scratch.
• singularityshell-B/scratch:/mnt/sw/singularity/SingularityImages-knot/ubuntu_croco.img Here, the /scratch
directory is mounted in your container at /mnt.

● From your CentOS 7 install, scp myubuntu.img username@pod.cnsi.ucsb.edu
● Note that once your image is on the clusters, it is immutable (unless you ask us to alter

something)

• Example job submission file on pod.cnsi.ucsb.edu – test-croco.job
#!/bin/bash -l
#Serial (1 core on one node) job…
#SBATCH --nodes=1 --ntasks-per-node=1
cd $SLURM_SUBMIT_DIR
source .bashrc
singularity exec -B /scratch:/mnt /sw/singularity/SingularityImages-knot/ubuntu_croco.img /home/fuz/test-croco.in

• Example run file for the container – test-croco.in
export PATH=/home/fuz/anaconda2/bin:$PATH apt list --installed
echo ""
echo "Which python am I using:"
which python
echo ""
Echo "Determine whether a number is prime or not" python primeornot.py

• Submit the job
• sbatch test-croco.job

