UC SANTA BARBARA

Parallel Programming with Python on
HPC

Paul Weakliem, Fuzzy Rogers, and Jay Chi

March 01, 2023

Our Team

Paul Weakliem, PhD Fuzzy Rogers Yu-Chieh “Jay” Chi, PhD
Co-Director That guy in the MRL Research Computing Consultant

Center for Scientific Computing & Center for Scientific Computing & Center for Scientific Computing &
California Nanosystems Institute = Materials Research Laboratory Enterprise Technology Services
Eling 3231 MRL 2066B Elings 3229
weakliem@cnsi.ucsb.edu fuz@ucsb.edu jaychi@ucsb.edu

UC SANTA BARBARA | Materials
Center fOT M R L Research N ENTERPRISE
Scientific v\ Laboratory ' [) TECHNOLOGY

Computing NSF Matorials Rosearch Scionce and Enginesring Conter [DMR 1720256) SERVICES

mailto:weakliem@cnsi.ucsb.edu
mailto:fuz@mrl.ucsb.edu
mailto:jaychi@ucsb.edu

Purposes of the Workshop

e \Write an Python code and use the HPC resource to get your computational
result efficiently.

e \What you will do in this workshop

e Quickly get started learning parallel Python programming

e Learn different parallel Python modules

e Implement some basic algorithms by using parallel techniques
e Basic benchmark the code and address the performance issues

e Basic Python Workshop
o UCSB Software Carpentries
(https://ucsbcarpentry.qithub.io/?field_location_tid=All&field_series_tid=1218)

https://ucsbcarpentry.github.io/?field_location_tid=All&field_series_tid=1218

Suggestions

e |[nstall Anaconda

o $ wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh
o $ sh Anaconda3-*.sh

e Create your Environment
o § conda create —name parallel_env
o $ condaenv list
o $ conda activate parallel_env

e Install Python Packages
o $ conda install numpy scipy sympy pandas matplotlib
$ conda install -c conda-forge multiprocess
$ conda install -c conda-forge mpi4py
$ conda install -c anaconda pillow
$ conda install -c conda-forge glob2
$ conda install -c conda-forge cupy cudatoolkit=11.0

o O O O O

https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh

Configure the environment

1. ssh to POD cluster from your local machine
$ ssh your_user_name@pod-login1.cnsi.ucsb.edu
2. Load the openmpi module
$ module load openmpi/3.1.3
3. Export the Anaconda Path
$ export PATH=/sw/csc/anaconda/anaconda3/bin:$PATH
4. Check your Python
$ which python
/sw/csc/anaconda/anaconda3/bin/python
5. Copy Files to your directory
https://drive.google.com/drive/folders/1GLtvL3eRCqCZnubVbKcyt-XcvsW3IXy3?usp=sharing

https://drive.google.com/drive/folders/1GLtvL3eRCqCZnubVbKcyt-XcvsW3IXy3?usp=sharing

Parallel Modules

e There are many different Python parallel modules. Please refer the link:
https://wiki.python.org/moin/ParallelProcessing

e In this workshop, we will introduce following parallel modules
o multiprocessing

o mpidpy
e Parallel programming is a broad with numerous possibilities for learning. The
workshop introduces some parallel modules available in Python for simple
parallel programming.
e If you are interested in the parallel programming, you can take parallel
programming and parallel algorithm class.

https://wiki.python.org/moin/ParallelProcessing

Scenario (Distributed Computing)

Professor

Exam:
16 Questions
300 Students

Scenario

Teaching Assistants

TA#1 TA#2 TA#3

Data Parallelism

75 Exams per everyone

The Multiprocessing Module

e Two simple classes from the multiprocessing module we are going to use for

today’s workshop:
o Process class
o Pool Class
e Process class represents an activity that will be run in a separate process and
execute a function across multiple values in parallel.
e The Pool class represents a pool of worker processes, and control a set of
worker processes via parallel map implementation.
e Ref: https://docs.python.org/3/library/multiprocessing.html

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool
https://docs.python.org/3/library/multiprocessing.html

Sequential Example

1

import numpy as np
import time

def task_sleep(job, sec):

print(f'Task {job} Starts to SLEEP now!!!!')

time.sleep(sec)

print(f'Task {job} Done for SLEEP!!!')

sleep_time = 1
num_jobs = 5

Time counter
start_time = time.perf_counter()

for idx in range(num_jobs):
task_sleep(idx, sleep_time)

end_time = time.perf_counter()
exe_time = end_time - start_time
print("Time taken: %.10f" ¥exe_time)

[jay@pod-loginl MultiPro_NEW]$ python mp_process_seq.py

Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Time

@ Starts to SLEEP now!!!!
© Done for SLEEP!!!
1 Starts to SLEEP now!!!!
1 Done for SLEEP!!!
2 Starts to SLEEP now!!!!
2 Done for SLEEP!!!
3 Starts to SLEEP now!!!!
3 Done for SLEEP!!!
4 Starts to SLEEP now!!!!
4 Done for SLEEP!!!
taken: 5.0131262760

The Process class

1 import multiprocessing as mp
2 import numpy as np
3 import time

5 def task_sleep(job, sec):

6 print(f'Task {job)} Starts to SLEEP now!!!!"')
7 time.sleep(sec)

8 print(f'Task {job} Done for SLEEP!!!')

11 sleep_time = 1

13 # Request No. of Cores
14 ###8##n_proc = os.getenv('SLURM_NTASKS', '1') # env var is always a 'str'

15 ###8#n_proc int{n_proc) # convert to 'int'
16 n_proc = 5 Ir= & 2 s
17 print('Number of Processor is requested: ', n_proc) ![Jay@pOd loglnl MUlt%PrO_NEW]$ python mp_process_para.py
18 Number of Processor is requested: 5
el Task @ Starts to SLEEP now!!!!

start_time = time.perf_counter()
21 Task 1 Starts to SLEEP now!!!!
22 p@® = mp.Process(target=task_sleep, args=(8, sleep_time)) Task 2 Starts to SLEEP now!!!!
23 pl = mp.Process(target=task_sleep, args=(1, sleep_time)) e
24 p2 = mp.Process(target=task_sleep, args=(2, sleep_time)) Task 3 Starts to SLEEP now!!!!
25 p3 = mp.Process(target=task_sleep, args=(3, sleep_time)) Task 4 Starts to SLEEP now!!!!
26 p4 = mp.Process(target=task_sleep, args=(4, sleep_time))
i 1 2 B Task © Done for SLEEP!!!
;g pg-s:artzz Task 1 Done for SLEEP!!!

.star

8. 53 stacal) Task 2 Done for SLEEP!!!
31 p3.start() Task 3 Done for SLEEP!!!
% Resetaxtl) Task 4 Done for SLEEP!!!
34 pe.join() Time taken: 1.0135198948
35 pl.join()
36 p2.join()

37 p3.join()
38 p4.join()

40 end_time = time.perf_counter()

41 exe_time = end_time - start_time

42 print("Time taken: %.10f" %exe_time)
-

The Process class ~ using the for loop

import multiprocessing as mp
import numpy as np
import time

def task_sleep(job, sec):
print(f'Task {job} Starts to SLEEP now!!!!"')
time.sleep(sec)
print(f'Task {job} Done for SLEEP!!!')

[l
FO®OONOOSWN R

sleep_time = 1

12 [[jay@Ppod-loginl MultiPro_NEW]$ python mp_process_para_for.py
13 # Request No. of Cores Task © Starts to SLEEP now!!!!
14 ####8n_proc = os.getenv('SLURM_NTASKS',6 '1') # env var is always a 'str' Task 1 Starts to SLEEP now!!!!
15 ####4n_proc = int(n_proc) # convert to 'int' Task 2 Starts to SLEEP now!!!!
16 Task 3 Starts to SLEEP now!!!!
17 n_proc = 18 Task 4 Starts to SLEEP now!!!!
12 - E—— Task 5 Starts to SLEEP now!!!!
20 start_time = time.perf_counter() Task & Staxts to SLEEP nowlli!
21 - - Task 7 Starts to SLEEP now!!!!
22 pro_id = [] Task 8 Starts to SLEEP now!!!!
23 for idx in 1‘3[.9.;-(n_proc); Task 9 Starts to SLEEP now!!!!
24 p = mp.Process(target=task_sleep, args=(idx, sleep_time)) Task @ Done for SLEEP!!!

25 #print('P: ', p) Task 1 Done for SLEEP!!!

26 p.start() Task 2 Done for SLEEP!!!

27 pro_id.append(p) Task 3 Done for SLEEP!!!

28 Task 4 Done for SLEEP!!!

29 #print("Proc_ID: ", pro_id) Task 6 Done for SLEEP!!!

30 for proc in pro_id: Task 5 Done for SLEEP!!!

31 proc.join() Task 7 Done for SLEEP!!!

32 # print('Proc: !, proc) Task 8 Done for SLEEP!!!

s . . Task 9 Done for SLEEP!!!

34 end_time s time.perf_counter() Time taken: 1.0177016947

35 exe_time = end_time - start_time
36 print("Time taken: %.10f" %exe_time)
™

The Pool class

e The Pool class in multiprocessing can handle an enormous number of
processes. It allows you to run multiple jobs per process.

e Pool class comes with different functions:

apply()

apply_async()

map()
map_sasync()

imap()
imap_unordered()

starmap()
o Starmap_async()

e The map function supports concurrency, but does not accept multiple
arguments.
e Ref: https://docs.python.org/3/library/multiprocessing.html

o 0O 0O 0O O O O

https://docs.python.org/3/library/multiprocessing.html

The Pool.map() function

8 def task_sleep(sec):

9 print(f'PID = {os.getpid()}, Starts to SLEEP now!l1!')
10 time.sleep(sec)

11 print(f'PID = {os.getpid()}, Done for SLEEP!!!')

12

13 sleep_time = 2
14 n_proc = 5
15 print('\nNo. of core is requested: ', n_proc, '\n')

16
1; sleep_list = [int(sleep_time) for i in range(n_proc)] [[jayPpod-loginl MultiPro_NEW]$ python mp_map.py
19 start_time = time.perf_counter() : 2
20 with ﬁp.Pool(procegses-= n_proc) as pool: No. of core is:requested: 5
21 pool.map(task_sleep, sleep_list)
22 end_time = time.perf_counter() PID = 156875, Starts to SLEEP now!!!!
23 PID = 156876, Starts to SLEEP now!!!!
24 print("Elapsed Time: ", end_time-start_time, "sec.") PID = 156877, Starts to SLEEP now!!!!
- PID = 156878, Starts to SLEEP now!!!!
PID = 156879, Starts to SLEEP now!!!!
PID = 156875, Done for SLEEP!!!
PID = 156878, Done for SLEEP!!!
PID = 156876, Done for SLEEP!!!
PID = 156879, Done for SLEEP!!!
PID = 156877, Done for SLEEP!!!

Elapsed Time: 2.046982287429273 sec.

SLURM job script

1 #!/bin/bash

2 #SBATCH ——job-name='Py_MultiPro' ### -J 'testJob'

3 #SBATCH ——ntasks=20 #88 -n 1

4 #SBATCH -p batch ### Partition to submit job to
5 #SBATCH -0 outlLog

6 #SBATCH —-e errlLog

7 #SBATCH -t 00:10:00

8

9 ##8#SBATCH ——mail-user=your_accountfucsb.edu

10 ###8SBATCH ——mail-type ALL

12 module load openmpi/3.1.3
13 export PATH=/sw/csc/anaconda/anaconda3/bin:$PATH

15 cd $SLURM_SUBMIT_DIR

17 python mp_process_para_for.py

Example 1: Monte Carlo PI Calculation

e https://en.wikipedia.org/wiki/Monte Carlo method#/me

dia/File:Pi_30K.qif 10
e The error in the MC estimate 05
i |
€me ™ % i 06 |
This dependence is foreshadowed by the beautiful theory
called the central limit theorem (CLT).

e We know that the area of square is 4r2, and the area of "o o2 o« & o5 15
circle is zr?. Pl can be estimated as the ratio of these
two area as following:

e

No. of points generated inside the circle
No. of points generated inside the square

T=4X

https://en.wikipedia.org/wiki/Monte_Carlo_method#/media/File:Pi_30K.gif
https://en.wikipedia.org/wiki/Monte_Carlo_method#/media/File:Pi_30K.gif

MC Pl Calculation ~ Sequential Code

1 import os
2 import time
3 import numpy as np
4 import multiprocessing as mp
5
6 def p1_mc(2um_gen)' 26 num_gen = 10000000
74 count = 0
8 np.random.seed() 27 :
0 28 # Serial

. 29 start = time.time()
10 for i in range(num_gen): :
11 x_val = np.random.random_sample() 9. mcoont = plmci nm_gen)
12 y—val = np.random random_sample() 22 PI_appr9x . ?*mc_cnt/num_gen
o - : : - 32 end = time.time()

) 33 print("Monta Carlo PI is: ", PI_approx)

1; radius = x_valxx_val + y_valxy_val 34 print("Time: ", end — start)
16 if radius <= 1.0:
17 count = count + 1
18
19 print(f"PID = {os.getpid()}, No. of Samples is {num_gen}\n")

20 return count

MC PI Calculation ~ Pool.map() function

PID = 257633, No. of Samples is 10000000.
Monta Carlo PI is: 3.1413648
Time: 5.758965492248535

Number of core is requested: 20

37 #####n_proc os.getenv('SLURM_NTASKS', '1') # env var is always a

S e PID = 257693, No. of Samples is 500000.
32 ﬁ#ﬁiiz-zr;g = Int{nh_prac) # FRRECH X9 SIpk PID = 257684, No. of Samples is 500000.
40 p;iﬁt('Number of core is requested: ', n_proc, '\n') PID = 257685, No. of Samples }S 560000 .
41 PID = 257683, No. of Samples is 500000.
42 partial = [int(num_gen/n_proc) for i in range(n_proc)] PID = 257696, No. of Samples 1s 500000.
43 PID = 257690, No. of Samples is 500000.
L, start = time.perf_counter() PID = 257688, No. of Samples is 500000.
45 with mp.Pool(processes=n_proc) as pool: PID = 257692, No. of Samples is 560000.
47 PI_approx_map = 4%np.sum(cnt_arr)/num_gen PID = 257687, No. of Samples is 500000.
48 print("PI_approx_multi_Core: ", PI_approx_map) PID = 257700, No. of Samples is 500000.
49 end = time.perf_counter() PID = 257698, No. of Samples is 500000.
50 print("Time: ", end - start) PID = 257695, No. of Samples is 500000.
PID = 257697, No. of Samples is 500000.
PID = 257691, No. of Samples is 500000.
PID = 257686, No. of Samples is 500000.
PID = 257694, No. of Samples is 500000.
PID = 257702, No. of Samples is 500000.
PID = 257699, No. of Samples is 500000.
PID = 257701, No. of Samples is 500000.

PI_approx_multi_Core: 3.141742

Time:

0.3860473190434277

Process Class with shared data

e In multiprocessing module programming, we might need to share data
between processes.

e This can be achieved using shared memory via shared ctypes.

e \What Are ctypes?

o The ctypes module provides tools for working with C data types.
o The ctypes module allows Python code to read, write, and generally interoperate with data
using standard C data types.

e \What are shared ctypes?
o Python provides the capability to share ctypes between processes on one system.
o This is primarily achieved via the following classes:

e Ref:
https://superfastpython.com/multiprocessing-shared-ctypes-in-pvyth

on/

https://superfastpython.com/multiprocessing-shared-ctypes-in-python/
https://superfastpython.com/multiprocessing-shared-ctypes-in-python/

MC PI Calculation ~ Process Class with shared data

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

#n_proc = os.getenv('SLURM_NTASKS', '1')
#n_proc = int(n_proc)

n_proc = 20

print('Number of Processor is requested:

init_zeros = [@ for 1 in range(n_proc)]
arr_seed = mp.Array('i', range(n_proc))

arr_cnt = mp.Array('i', init_zeros)
partial = int(num_gen/n_proc)

num_proc = []
start_time = time.perf_counter()

for idx in range(n_proc):

p = mp.Process(target=pi_mc_para, args=(idx, arr_cnt, partial, idx))

p.start()
num_proc.append(p)

for proc in num_proc:
proc.join()

PI_approx_para = 4*np.sum(arr_cnt)/num_gen

end_time = time.perf_counter()
print("Time: ", end_time - start_time)
print(arr_cnt[:])

print("Monta Carlo PI Parallel: ", PI_approx_para)

env var is always a 'str'
coerce to

PID = 4444, No. of Samples is 10000000

Monta Carlo PI is:

Time:

No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

Time:

Samples
Samples
Samples
Samples
Samples
Samples
Samples
Samples
Samples
Samples
Samples
Samples
Samples
Samples
Samples
Samples
Samples
Samples
Samples
Samples

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

3.1414284
5.302408933639526
Number of Processor is requested:

500000
500000
500000
500000
500000
500000
500000
500000
500000
500000
500000
500000
500000
500000
500000
500000
500000
500000
500000
500000

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

0.34324445482343435
Monta Carlo PI Parallel:

3.

Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process

1408292

20

with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with

ONODWOORPN®D >

PRREPRERRRERRR
POONOCWAON>®

Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand
Rand

Seed
Seed
Seed
Seed
Seed
Seed
Seed
Seed
Seed
Seed
Seed
Seed
Seed
Seed
Seed
Seed
Seed
Seed
Seed
Seed

OVNODWOORP N>

10
14
12
15
13
16
17
19
18
11

MC PI Calculation ~ Process Class with shared data

6 def pi _mc(proc, count, num_gen, seed):

7

8

<
10
11
12
13
14
16
16
17

44
45
hé
47
48
49
50
51
52
53
54

np.random.seed(seed)

count = @

for 1 in range(num_gen):
x_val np.random.random_sample()
y_val = np.random.random_sample()

radius = x_val*x_val + y_val*y_val

if radius <= 1.0:
count = count + 1

mc_cnt = @
num_gen = 1006000060
seed = 1

Serial

start = time.time()

mc_cnt = pi_mc(seed, mc_cnt, num_gen, seed)
PI_approx = 4*mc_cnt/num_gen

end = time.time()

print("Monta Carlo PI is: ", PI_approx)
print("Time: ", end - start)

23 def pi_mc_para(proc, count, num_gen, seed):

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

#np.random.seed(seed[proc])
np.random.seed(seed)

cnt = 0

for i in range(num_gen):
x_val = np.random.random_sample()
y_val = np.random.random_sample()

radius = x_val*x_val + y_val*y_val
if radius <= 1.0:
cnt = cnt + 1

#count[proc] = count[procl+1

count[proc] = cnt

Example 2: Add Gaussian Noise signal to the Image

We have multiple images in the folder.

Each image is given an image of (H*W*3) dimensions. Let us write a program
to add Gaussian noise to the image.

We can directly use np.random.normal(mu, sigma, size) to sample a pixel
intensity from a Gaussian distribution. We can specify mu as 0, and sigma as
the standard deviation.

Next, generate a (H*W*3) dimensional Gaussian noise array, where H is the
height of the image, W is the width, and 3 is the (RGB) channels. Then, add
this Gaussian noise array to the given image.

Example 2: Add Gaussian Noise signal to the Image

Example 2: Add Gaussian Noise signal to the Image

9 def img_noise(img_file):

18 # extract the base file name

11 file_path = img_file[9:-4]

12 print('Image File: ', file_path)

13

14 # open the given file

15 open_img = Image.open(img_file)

16 print('Image size:', np.shape(open_img))

17

18 # convert to numpy array

19 np_img_arr = np.zeros(np.shape(open_img))

20 np_img_arr = np.array(open_img)

¢ 41 2

22 # Convert img_arr values between [0, 1]

23 np_img_arr = np_img_arr / 255

24

25 # Generate normal random noise

26 mu, sigma = @, 8.1 # mean and standard deviation

27 normal_random_noise = np.random.normal(mu, sigma, np.shape(np_img_arr))
28

29 # Add noise to the image

30 noise_image = np_img_arr + normal_random_noise

31

32 # convert back to integers by multiplying with 255 (add code) and cast it as "uint8"
33 noise_image = (noise_image*255).astype(np.uint8)

34 #print(type(noise_image))

35

36 # Save new image to a new folder with new image name

37 matplotlib.image.imsave('../image_noise_para/' + file_path + "_noise.jpg", noise_image)
38

39 print('The noise has been addded on this image!!!')

Difference between Pool.map and Process

e Accept single argument vs. multiple arguments
e Multiple Tasks vs. Single Task

60 n_cores = 16
61 print('\nNumber of core is requested: ', n_cores, '\n')
62
63 start_time = time.perf_counter()
59 n_cores = 16 64
zg print('\nNumber of core is requested: ', n_cores, '\n') 65 pro_id = []
¢ 9 66
2§ start_time = time.perf_counter() 67 for idx in range(n_cores):
64 with mp.Pool(processes=n_cores) as pool: §8 p = mp.Process(target=img_noise, args=(file_list[idx],))
65 pool.map(img_noise, file_list) 69 p.st?rt()
66 70 pro_id.append(p)
67 end_time = time.perf_counter() y ja
68 print("Elpased Time: ", end_time - start_time) 72 for proc in pro_id:
73 proc.join()
74
75 end_time = time.perf_counter()

76 print("Elpased Time: ", end_time - start_time)

Difference between

Number of core is requested: 8

Image File: animal_beautiful_big
Image File: ESO_Very_Large_Telescope
Image File: time_on_big_ben_192639
Image File: maple_big_tree_red

Image File: big_bend_texas_deer
Image File: Chess_Large

Pool.map and Process

Image File: big_brother_is_watching_you_196554

Image File: architecture_big_ben

Image size: (3048, 3640, 3)

Image size: (4971, 3314, 3)

Image size: (5000, 3333, 3)

Image size: (2832, 4256, 3)

Image size: (2848, 4288, 3)

Image size: (3456, 4608, 3)

Image size: (3333, 5000, 3)

Image size: (5370, 3580, 3)

The noise has been addded on this image!!!
Image File: animal_big_carnivore

Image size: (5008, 3334, 3)

The noise has been addded on this image!!!
Image File: animal_beak_big

Image size: (3655, 30804, 3)

The noise has been addded on this image!!!
Image File: Sample-jpg-image-5mb

The noise has been addded on this image!!!
Image File: big_city_facades_view

The noise has been addded on this image!!!
Image File: big_board_check

The noise has been addded on this image!!!
Image File: animal_big_black

Image File:

Image size:
Image size:
Image size:
Image size:

(
(
(

animal_big_black
(3264, 2448, 3)

3744,
4660,
6761,

The noise has been
Image File:
The noise has been addded on this image!!!

Image File:
The noise has been
Image size: (3456,
Image size: (3333,

The
The
The
The
The
The
The

noise
noise
noise
noise
noise
noise
noise

has
has
has
has
has
has
has

Elpased Time:

rocks

5616, 3)
3106, 3)
5072, 3)
addded on this image!!!

_amp_waves_big_sur_2_563664

africa_animal_big

addded on this
5184, 3)
5000, 3)

been
been
been
been
been
been
been

addded
addded
addded
addded
addded
addded
addded

on
on
on
on
on
on
on

this
this
this
this
this
this
this

13.9842133577913085

image!!!

image!!!
image!!!
image!!!
image!!!
image!!!
image!!!
image!!!

Number of core is requested:

8

../image/animal_beautiful_big.jpg

Image File:

Image File:

Image File:

Image File:

Image File:

Image File:
../image/architecture_big_ben.jpg
architecture_big_ben

Image
Image
Image
Image
Image
Image
Image
Image
Image

File:

size:
size:
size:
size:
size:
size:
size:
size:

The noise
The noise
The noise
The noise
The noise
The noise
The noise
The noise
Elpased Time:

(
(
(
(
(
(
(
(
has
has
has
has
has
has
has
has

animal_beautiful_big
../image/ESO_Very_Large_Telescope.jpg
ESO_Very_Large_Telescope
../image/time_on_big_ben_192639.jpg

time_on_big_ben_192639

../image/maple_big_tree_red.jpg
maple_big_tree_red
../image/big_bend_texas_deer.jpg
big_bend_texas_deer
../image/Chess_Large.jpg
Image File:

Chess_
../image/big_brother_is_watching_you_196554.3jpg
big_brother_is_watching_you_196554

3048,
4971,
5000,
2848,
3333,
5370,
2832,
3456,
been
been
been
been
been
been
been
been

Large

3640,
3314,
3333,
4288,
5000,
3580,
4256,
4608,
addded
addded
addded
addded
addded
addded
addded
addded

3)

on
on

this
this
this
this
this
this
this
this

5.226678730919957

image!!!
image!!!
image!!!
image!!!
image!!!
image!!!
image!!!
image!!!

What is MPI1?

e Message Passing Interface (MPI) primarily addresses the message-passing parallel
programming model. The data is moved from one process's address space to another
through cooperative operations on each process.

e Compare multiprocessing and mpi4py modules

o Shared Memory: Multiple processes share a single memory space with full read/write
ability

o Distributed Memory: Each process receives a copy of the memory space when they are
first initialized. Communication is handled through message passing.

e Command for running MPI Python script

mpirun -np 8 python example.py

e Ref:
https://rabernat.qgithub.io/research computing/parallel-programming-with-mpi-for-python.html

https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html

MPI| Collective Communication

e Broadcasting: Broadcasting takes a variable and sends an exact copy to all

processes on a communicator.
o comm.bcast(send_data, root=0)

OL
@x O= = (=

e Scattering: Scatter takes an array and distributes contiguous sections of it

across the ranks of a communicator.
o comm.scatter(send_data, root=0)

ors
OLNOLNOLNO

MPI| Collective Communication

e Gathering: Gather takes subsets of an array that are distributed across the

ranks, and gathers them back into the full array.
o comm.gather(obj, root=0)

OLNOLNOLNO)
() ==

e Reduction: Reduce operation takes values from an array on each process

and reduces them to a single result on the root process.
o comm.reduce(recv_data, op=, root=0)

02,08 0z

Reduce Operation

MPI.MAX: Returns the maximum element.

MPI.MIN: Returns the minimum element.

MPI.SUM: Sums the elements.

MI.PROUD: Multiplies all elements.

MPI.LAND: Performs a logical AND across the elements.

MPI.LOR: Performs a logical OR across the elements.

MPI.BAND: Performs a bitwise AND across the bits of the elements.
MPI1.BOR: Performs a bitwise OR across the bits of the elements.

MC Pl Calculation ~ MPI Scatter and Reduce
comm = MPI.COMM_WORLD
24 size = comm.Get_size()
25 rank = comm.Get_rank()
26 my_name = MPI.Get_processor_name()
27 PID = os.getpid()
28
1 from mpi4py import MPI g% Mastara®
2 import numpy as n = A88r = 0n ok 08
3 p Py P . 31 num_gen = 10000000 x
3 1mport sys 32 partial = int(num_gen / size)
4 im 33 #print('Data Type: ', type(partial), 'Partial: ', partial)
import os
34 cnt = 0@
5
: 35
6 def pi mc(count, num_gen, seed):) / \ . 36 if rank == Master:
7 np.random.seed(seed) 37 seed = np.arange(size, dtype = 'i')
8 @ [@] @ o @ O 38 print('Total No. of Sampling: ', num_gen)
. 39 print('We are scattering the Random Seed:', seed, ' to each Rank.')
o for 1 in range(num_gen): 40
10 x_val = np.random.random_sample() 41 start_time = MPI.Wtime()
11 y_val = np.random.random_sample() Ag seed_s = comm.scatter(seed, root=Master)
&
ie . bb # function from here
13 radius = x_val*x_val + y_val#*y_val 45 cnt = pi_mc(cnt, partial, seed_s)
14 46
15 if radius < 1: 47 Izint("Hi, My PID is: ", PID, ', Hello World!!!"')
48 print('Rank is: ' , rank, ' and seed = ', seed_s)
16 B count = count + 1 ia
17 50 cnt_g = comm.gather(cnt, root=Master)
18 print(f'This is Process: {rank}, Rand Seed is: {seed}, Count is g; § b SO
end_time = Wtime
19 return count 53 elapsed_time = end_time - start_time
54
@ @ @ @ 55 tot = comm.reduce(cnt, op=MPI.SUM, root=Master)
56
57 #print('SEED Gather: ', seed_g)
MPI_SUM) 58
59 if rank == Master:
60 print('seed:', seed)
61 print('Count Gather:', cnt_g)
62 print('PI: ', 4*tot/num_gen)

63 print('Elapsed Time: ', elapsed_time)

MPI| Point to Point Communication

e For our previous MC example, we used the simple communication routines,
comm_scatter() and comm_Reduce().

e But you can send any piece of data from any process to any other process,
using comm_send() and comm_receive().

e Basically, send and receive some numbers from one program to another.

e |f you understand the Send and Receive commands, you should be able to
create pretty much any parallel program you need in MPI.

e comm.send(obj, dest, tag=1)
o “tag” can be used as a filter
e comm.recv(source, tag=1)

Task Parallelism

75 Exams per everyone

Question 5-8 Question 9-12 Question 13-16

. — — — — — —

Question 1-4 —— —— ——

— — — — — —

— — — — — —

— — — — —

— — Lom om
r?
—r?
r'
S

Example 3: Numerical Integration

90

80

70|

60 | 1

 f(x) =x+5x?-05x%°

40}

307

20|

10}

% 1 2 3 4 5 & 7 8 98 10

Integral fab f(x)dx can be approximately computed using the trapezoid method, which is illustrated in figure. We divided the function into n
subinterval with the node {xg, X1, ... , X} Where Xo = @, and x,, = b. The width is Ax = bLna. The area of the trapezoidal over the interval

. b -1
[i + 1] is Ay = SO0 + f (i) S, f(0dx =55 Ar
Write a MPI program to integral f(x) = x + 5x> — 0.5x> (shown in the picture) over the interval [0, 10] using trapezoidal method.

In this program, the interval is evenly divided to N ,, subintervals. N , is the number of processes. The process i(i=0,1,... ,Np_l) isin
charge of the interval [X;, X;;1] and computes the area A;.

The process i only evaluates the function f(x) at X; and gets f(x; + 1) from the process i + 1.

This algorithm indicates that the processes send data to each other in a ring-like fashion, except for the last process which calculates both
f(xN p_1) and f(xN p).

Numerical Integration ~ MP| Send and Receive

+ -
§ def func(x): 36 if rank !|= Master:
6 f = x + 5.0%x¥x — 0.5%)kX*X 37 comm.send(f_xi, dest=DESTINATION, tag=1)
7 return f 38 print(f'PASS f(xi) = {f_xi} to Rank ID: {DESTINATION}.')
39
40 if rank != (size-1):
41 f_xil = comm.recv(source=SOURCE, tag=1)
42 gprintl ' foxi-= ¥, Ffoxi)
43 print(f'Get the f(x_i+1) = {f_xil} from Source ID: {SOURCE}')
b4 subArea = 0.5 * h * (f_xi + f_xil)
12 a=29 45 print(f'Sub Area is: {subArea}')
13 b = 10 46 else:
14 47 xil = size*h
15 comm = MPI.COMM_WORLD 48 f_xil = func(xil)
16 size = comm.Get_size() # No. of Processors 49 print(f'Calculate the (x_i+1) = {xil} and f(x_i+1) = {f_xi1}')
17 rank = comm.Get_rank() # Process ID 50 subArea = 8.5 * h * (f_xi + f_xi1)
18 my_name = MPI.Get_processor_name() 51 print(f'Sub Area is: {subArea}')
19 PID = os.getpid() 52
20 53 tot = comm.reduce(subArea, op=MPI.SUM, root=Master)
21 # Define Master as @ 54
22 Master = 0 55 if rank == Master:
23 . 56 print(' \n#SEEEEEBRRRARBRBBRBBBERBRAR)
h.= (b-a) / size 57 print('Total No. of Processor is: ', size)
25 xi = rank * h 58 print('No. of Processor is: ', size)
f_xi = func(xi) 59 print(f'This is Master (Rank ID is: {rank})')
27 60 print(f'Source is: {SOURCE}, NO DESTINATION!!!')
28 SOURCE = rank + 1 61 print('Final Integral Result is: ', tot)
gg DESTTMATION &=Tank:~"1 62 Print(' #EBRERRRREBRERRREBRRERRRARE D)
31 print(f'#aapsppspsgsssspnnnnit My Rank ID is: {rank)} S#HBARGRBRBBREEEBHERRERER)
32 print("Process Name: ", my_name)
33 print("Hi, My PID is: ", PID, ', Hello World!!!"')

34 print(f'Calculate the (x_i) = {xi} and f(x_1i) = {f_xi}')

Numerical Integration ~ MP| Send and Receive

BEBEBRRARBREEERRRAREEEEE My Rank ID is: 7 BHBHRBBBHEBRRRRBREEERRRAY
Process Name: pod-loginl.podcluster

Hi, My PID is: 228091 , Hello World!!!

Calculate the (x_i) = 7.8 and f(x_1i) = 80.5

PASS f(xi) = 80.5 to Rank ID: 6.

Get the f(x_i+1) = 72.8 from Source ID: 8

Sub Area is: 76.25

BEEBBRRBRBERERRRRBBREEEE My Rank ID is: O HHHHBEEBERERRBREEBRRRAREE
Process Name: pod-loginl.podcluster

Hi, My PID is: 228084 , Hello World!!!

Calculate the (x_i) = 0.0 and f(x_i) = 0.0

PASS f(xi) = 8.8 to Rank ID: -1.

Get the f(x_i+1) = 5.5 from Source ID: 1

Sub Area is: 2.75

HEBREBREBBRBBRRBBRBBBREBRRY
Total No. of Processor is: 18
No. of Processor is: 18

This is Master (Rank ID is: @)
Source is: 1, NO DESTINATION!!!
Final Integral Result is: 462.5
BEBBBEBRBBRR BB BB BBBRRRERE

BEEBBRRBRBERERRRRBBREEEE My Rank ID is: 1 HHSHBBEBERBRRBREEBRRRAREE
Process Name: pod-loginl.podcluster

Hi, My PID is: 228085 , Hello World!!!

Calculate the (x_i) = 1.0 and f(x_i) = 5.5

PASS f(xi) = 5.5 to Rank ID: @.

Get the f(x_i+1) = 18.8 from Source ID: 2

Sub Area is: 11.75

80}

70¢

60t

50 ¢

40 ¢

307

20}

10

10

Testing Parallel Code on the Cluster

e Perform a small test on your computer first

e Test your small Parallel Code on the short partition or your local machine

e Submit your slurm script job to the queue

Conclusion

e In today’s workshop, | hope it helps you to learn some concepts of parallel
Python programming.

e \What is the difference between Process class and Pool class? Which one is
suitable for you?

e You can see that the mpi4dpy module requires more programming effort than
the multiprocess module, but it is much more powerful.

e Parallel programming is a broad with numerous possibilities for learning. The
workshop JUST introduces a few parallel modules available in Python for
simple parallel programming.

e Find which parallel module suits your computational research project and dig
into it.

Questions and Thought

e \What else content should we cover?
e Other ideas for a workshop?

e More Information:

https://csc.cnsi.ucsb.edu/

https://csc.cnsi.ucsb.edu/

