
Parallel Programming with Python on
HPC

Paul Weakliem, Fuzzy Rogers, and Jay Chi

March 01, 2023

UC SANTA BARBARA

Paul Weakliem, PhD
Co-Director

Center for Scientific Computing &
California Nanosystems Institute

Eling 3231
weakliem@cnsi.ucsb.edu

Fuzzy Rogers
That guy in the MRL

Center for Scientific Computing &
Materials Research Laboratory

MRL 2066B
fuz@ucsb.edu

Yu-Chieh “Jay” Chi, PhD
Research Computing Consultant
Center for Scientific Computing &
Enterprise Technology Services

Elings 3229
jaychi@ucsb.edu

Our Team

mailto:weakliem@cnsi.ucsb.edu
mailto:fuz@mrl.ucsb.edu
mailto:jaychi@ucsb.edu

Purposes of the Workshop

● Write an Python code and use the HPC resource to get your computational
result efficiently.

● What you will do in this workshop
● Quickly get started learning parallel Python programming
● Learn different parallel Python modules
● Implement some basic algorithms by using parallel techniques
● Basic benchmark the code and address the performance issues

● Basic Python Workshop
○ UCSB Software Carpentries

(https://ucsbcarpentry.github.io/?field_location_tid=All&field_series_tid=1218)

https://ucsbcarpentry.github.io/?field_location_tid=All&field_series_tid=1218

Suggestions

● Install Anaconda
○ $ wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh
○ $ sh Anaconda3-*.sh

● Create your Environment
○ $ conda create –name parallel_env
○ $ conda env list
○ $ conda activate parallel_env

● Install Python Packages
○ $ conda install numpy scipy sympy pandas matplotlib
○ $ conda install -c conda-forge multiprocess
○ $ conda install -c conda-forge mpi4py
○ $ conda install -c anaconda pillow
○ $ conda install -c conda-forge glob2
○ $ conda install -c conda-forge cupy cudatoolkit=11.0

https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh

Configure the environment

1. ssh to POD cluster from your local machine

$ ssh your_user_name@pod-login1.cnsi.ucsb.edu

2. Load the openmpi module

$ module load openmpi/3.1.3

3. Export the Anaconda Path

$ export PATH=/sw/csc/anaconda/anaconda3/bin:$PATH

4. Check your Python

$ which python

/sw/csc/anaconda/anaconda3/bin/python

5. Copy Files to your directory

https://drive.google.com/drive/folders/1GLtvL3eRCqCZnubVbKcyt-XcvsW3IXy3?usp=sharing

https://drive.google.com/drive/folders/1GLtvL3eRCqCZnubVbKcyt-XcvsW3IXy3?usp=sharing

Parallel Modules

● There are many different Python parallel modules. Please refer the link:
https://wiki.python.org/moin/ParallelProcessing

● In this workshop, we will introduce following parallel modules
○ multiprocessing
○ mpi4py

● Parallel programming is a broad with numerous possibilities for learning. The
workshop introduces some parallel modules available in Python for simple
parallel programming.

● If you are interested in the parallel programming, you can take parallel
programming and parallel algorithm class.

https://wiki.python.org/moin/ParallelProcessing

Scenario (Distributed Computing)

Exam:
16 Questions
300 Students

Professor

Scenario
Teaching Assistants

TA #1 TA #2 TA #3

Data Parallelism

TA #1 TA #2 TA #3

75 Exams per everyone

The Multiprocessing Module

● Two simple classes from the multiprocessing module we are going to use for
today’s workshop:
○ Process class
○ Pool Class

● Process class represents an activity that will be run in a separate process and
execute a function across multiple values in parallel.

● The Pool class represents a pool of worker processes, and control a set of
worker processes via parallel map implementation.

● Ref: https://docs.python.org/3/library/multiprocessing.html

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool
https://docs.python.org/3/library/multiprocessing.html

Sequential Example

The Process class

The Process class ~ using the for loop

The Pool class

● The Pool class in multiprocessing can handle an enormous number of
processes. It allows you to run multiple jobs per process.

● Pool class comes with different functions:
○ apply()
○ apply_async()
○ map()
○ map_sasync()
○ imap()
○ imap_unordered()
○ starmap()
○ Starmap_async()

● The map function supports concurrency, but does not accept multiple
arguments.

● Ref: https://docs.python.org/3/library/multiprocessing.html

https://docs.python.org/3/library/multiprocessing.html

The Pool.map() function

SLURM job script

Example 1: Monte Carlo PI Calculation

● https://en.wikipedia.org/wiki/Monte_Carlo_method#/me
dia/File:Pi_30K.gif

● The error in the MC estimate

This dependence is foreshadowed by the beautiful theory
called the central limit theorem (CLT).

● We know that the area of square is , and the area of
circle is . PI can be estimated as the ratio of these
two area as following:

https://en.wikipedia.org/wiki/Monte_Carlo_method#/media/File:Pi_30K.gif
https://en.wikipedia.org/wiki/Monte_Carlo_method#/media/File:Pi_30K.gif

MC PI Calculation ~ Sequential Code

MC PI Calculation ~ Pool.map() function

Process Class with shared data

● In multiprocessing module programming, we might need to share data
between processes.

● This can be achieved using shared memory via shared ctypes.
● What Are ctypes?

○ The ctypes module provides tools for working with C data types.
○ The ctypes module allows Python code to read, write, and generally interoperate with data

using standard C data types.
● What are shared ctypes?

○ Python provides the capability to share ctypes between processes on one system.
○ This is primarily achieved via the following classes:

■ multiprocessing.Value
■ multiprocessing.Array

● Ref:
https://superfastpython.com/multiprocessing-shared-ctypes-in-pyth
on/

https://superfastpython.com/multiprocessing-shared-ctypes-in-python/
https://superfastpython.com/multiprocessing-shared-ctypes-in-python/

MC PI Calculation ~ Process Class with shared data

MC PI Calculation ~ Process Class with shared data

Example 2: Add Gaussian Noise signal to the Image

● We have multiple images in the folder.
● Each image is given an image of (H*W*3) dimensions. Let us write a program

to add Gaussian noise to the image.
● We can directly use np.random.normal(mu, sigma, size) to sample a pixel

intensity from a Gaussian distribution. We can specify mu as 0, and sigma as
the standard deviation.

● Next, generate a (H*W*3) dimensional Gaussian noise array, where H is the
height of the image, W is the width, and 3 is the (RGB) channels. Then, add
this Gaussian noise array to the given image.

Example 2: Add Gaussian Noise signal to the Image

Example 2: Add Gaussian Noise signal to the Image

Difference between Pool.map and Process

● Accept single argument vs. multiple arguments
● Multiple Tasks vs. Single Task

Difference between Pool.map and Process

What is MPI?

● Message Passing Interface (MPI) primarily addresses the message-passing parallel
programming model. The data is moved from one process's address space to another
through cooperative operations on each process.

● Compare multiprocessing and mpi4py modules
○ Shared Memory: Multiple processes share a single memory space with full read/write

ability
○ Distributed Memory: Each process receives a copy of the memory space when they are

first initialized. Communication is handled through message passing.
● Command for running MPI Python script

mpirun -np 8 python example.py

● Ref:
https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html

https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html

MPI Collective Communication

● Broadcasting: Broadcasting takes a variable and sends an exact copy to all
processes on a communicator.

○ comm.bcast(send_data, root=0)

● Scattering: Scatter takes an array and distributes contiguous sections of it
across the ranks of a communicator.

○ comm.scatter(send_data, root=0)

MPI Collective Communication

● Gathering: Gather takes subsets of an array that are distributed across the
ranks, and gathers them back into the full array.

○ comm.gather(obj, root=0)

● Reduction: Reduce operation takes values from an array on each process
and reduces them to a single result on the root process.

○ comm.reduce(recv_data, op=, root=0)

Reduce Operation

● MPI.MAX: Returns the maximum element.
● MPI.MIN: Returns the minimum element.
● MPI.SUM: Sums the elements.
● MI.PROUD: Multiplies all elements.
● MPI.LAND: Performs a logical AND across the elements.
● MPI.LOR: Performs a logical OR across the elements.
● MPI.BAND: Performs a bitwise AND across the bits of the elements.
● MPI.BOR: Performs a bitwise OR across the bits of the elements.

MC PI Calculation ~ MPI Scatter and Reduce

MPI Point to Point Communication

● For our previous MC example, we used the simple communication routines,
comm_scatter() and comm_Reduce().

● But you can send any piece of data from any process to any other process,
using comm_send() and comm_receive().

● Basically, send and receive some numbers from one program to another.
● If you understand the Send and Receive commands, you should be able to

create pretty much any parallel program you need in MPI.
● comm.send(obj, dest, tag=1)

○ “tag” can be used as a filter
● comm.recv(source, tag=1)

Task Parallelism

Question 9-12Question 5-8 Question 13-16

Question 1-4

75 Exams per everyone

Example 3: Numerical Integration

Numerical Integration ~ MPI Send and Receive

Numerical Integration ~ MPI Send and Receive

Testing Parallel Code on the Cluster

● Perform a small test on your computer first

● Test your small Parallel Code on the short partition or your local machine

● Submit your slurm script job to the queue

Conclusion

● In today’s workshop, I hope it helps you to learn some concepts of parallel
Python programming.

● What is the difference between Process class and Pool class? Which one is
suitable for you?

● You can see that the mpi4py module requires more programming effort than
the multiprocess module, but it is much more powerful.

● Parallel programming is a broad with numerous possibilities for learning. The
workshop JUST introduces a few parallel modules available in Python for
simple parallel programming.

● Find which parallel module suits your computational research project and dig
into it.

Questions and Thought

● What else content should we cover?
● Other ideas for a workshop?

● More Information:

https://csc.cnsi.ucsb.edu/

https://csc.cnsi.ucsb.edu/

