
Computational Linguistics

KS-DFT

UC SANTA BARBARA HPC Workshop 1
Feb. 21 , 2024

02:00 – 03:00 pm (followed by dessert)
Location: Elings Hall 1601

Quickly start using HPC resource at UCSB
• What is HPC?
• Quickly get Started to Use HPC
• Basic Linux Commands
• Basic Slurm Commands
• Producible and Portable Software

EnvironmentRegister @ https://csc.cnsi.ucsb.edu

Introduction to
High-Performance Computing (HPC)

Paul Weakliem and Jay Chi

Feb. 21, 2024

UC SANTA BARBARA

Paul Weakliem, PhD
Co-Director

Center for Scientific Computing &
California Nanosystems Institute

Eling 3231
weakliem@cnsi.ucsb.edu

Fuzzy Rogers
Research Computing Administrator
Center for Scientific Computing &

Materials Research Laboratory
MRL 2066B

fuz@mrl.ucsb.edu

Yu-Chieh “Jay” Chi, PhD
Research Computing Consultant
Center for Scientific Computing &
Enterprise Technology Services

Elings 3229
jaychi@ucsb.edu

Speaker Introductions

mailto:weakliem@cnsi.ucsb.edu
mailto:fuz@mrl.ucsb.edu
mailto:jaychi@ucsb.edu

Our Research IT Partners

Mike Edwards
Director of Engineering Computing
Infrastructure (ECI)
3152A Harold Frank Hall
mcs@engineering.ucsb.edu

Michael Colee
Director of General Research
IT Group (GRIT)
6703 Ellison Hall
mtc@eri.ucsb.edu

Ted Cabeen
Director of Life Science
Computing Group (LSCG)
2306 Life Science
ted.cabeeen@lscg.ucsb.edu

Andreas Boschke
Director of Infor. Infrastructure
at Letter & Science IT (LSIT)
2306 Life Science
andreas@lsit.ucsb.edu

mailto:mcs@engineering.ucsb.edu
mailto:mcs@engineering.ucsb.edu
mailto:mcs@engineering.ucsb.edu
mailto:mcs@engineering.ucsb.edu

Introduction

● Most of you are here because you are doing computational research.
○ Have a specific scientific computing project you are interested in
○ Need large-scale computing or data memory resources

● The actual HPC hardware is probably important
○ Hardware is important but not that interesting

● How many linux command that you need to know for working in the Pure
Linux environment?

○ We don’t have to be a Linux expert.
● In this workshop, you will know

○ What is the Center for Scientific Computing (CSC) at UCSB?
○ Introduction to High-Performance Computing (HPC) at UCSB
○ Quickly get started to use cluster
○ Learn the basic of Linux Commands
○ File Transfer
○ Producible and Portable Software Environment
○ Learn the basic of Slurm (Simple Linux Utility for Resource Management) commands to submit jobs to the

cluster

What is Center for Scientific Computing (CSC)

What we are:

● A home for HPC and expertise with national supercomputing centers leveraging CNSI,
MRL, and ITS resources to enable researchers to focus on the research project/education
and not the infrastructure.

Support Capabilities

● We provide the computational infrastructure.
● We provide a large amount of data to store and/or process.
● We provide user support, assistance with use of resource, installation of applications, and

training.
● We work with your local IT staff to provide help.
● Regular working hours, realistically, 8:30 am - 5 pm Monday through Friday. But we try to

make sure the clusters are running near 24/7 (I’d say 365, but it’s UCSB and we’re a small
group)

We don’t upgrade our cluster system offen.

Overview

● Most research now involve some form of computing
○ Often you're solving equations, or analyzing data/doing statistics (‘data science’). Engineers

often will model a device.
○ Some specific examples:

■ Protein Folding
■ Structure of crystal
■ Search for patterns in DNA
■ Predicting the spread of wildfire
■ Weather prediction
■ Natural Language Processing

● Like many parts of research, you often start a small, with a simple idea, but it
grows beyond what you (or your computer) can do yourself!

● Solution:
○ Better Computer
○ High-Performance Computing (HPC)
○ Cloud (Can be both of above, with arbitrary size) - somebody else’s computer!

When to run on HPC

Laptop/Desktop

● Coding
● Exploratory phase
● Small Datasets
● Run on few cores
● Few computational jobs

HPC

● Scaling up to
○ Large datasets
○ Long runtimes

● Run on many cores
● Multiple computational jobs

What is High-Performance Computing (HPC)?

● High-Performance Computing (HPC) allows scientists and engineers to solve complex science,
engineering, and business problem using applications that require high bandwidth, enhanced
networking, and very high compute capabilities. Ref: https://aws.amazon.com/hpc/

● Multiple computer nodes connected by a very fast interconnect.
● Each node contains many CPU cores (around 12-40 cores) and 4-6G RAM.
● Allows many users to run calculations simultaneously on nodes.
● Allows a single user to use many CPU caress incorporating multiple nodes.
● Often has high end (64 bit/high memory) GPUs

UCSB provides access and support for multiple HPC resources and educational/training/research support.

HPC is not always the only one solution!!!

● Sometimes you need a faster desktop workstation
● Sometimes ‘Cloud’ is the right solution (need 1000 nodes, but only once every 3 months)
● Sometimes you might even need your own cluster …….

https://aws.amazon.com/hpc/

General HPC Workflow

Your local PC

Login Node

SLURM
Job Schedule

Computing
Node

6. Grab Results

5. Get Results

3. Job Runs on the Cluster

1. ssh

2. sbatch

4. Job Running

Computing
Node

Slurm script

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

HPC Infrastructure

Memory

Network/Shared File Storage System

Socket

core

core

core

core

core

core

Node

core

core

core

core

core

core

core

core

core

Socket

core

core

core

core

core

core

core

core

core

core

core

core

core

core

core

Memory

Socket

core

core

core

core

core

core

Node

core

core

core

core

core

core

core

core

core

Socket

core

core

core

core

core

core

core

core

core

core

core

core

core

core

core

Terminologies Definitions

● Core: The smallest compute unit that can process logic and floating point (run
a program).

● CPU: The chip that processes the basic instructions that drive a computer.
The term processor is used interchangeably with the term central
processing unit (CPU). CPUs have many cores.

● Socket: A physical processor which includes multiple cores with sharing
memory. Most of our stuff has 2 sockets, for 2 CPUs.

● Node: An individual computer that includes one or more sockets, memory,
storages, etc. The fast network connects other nodes.

HPC system at CSC

● Campus available cluster Knot (aka ‘knot7’) (CentOS/RH 7):
○ 110 nodes with ~ 1400 cores system
○ 4 “fat” nodes with 1TB memory RAM
○ GPU nodes (12 M2050’s) (too old now)

● Campus available cluster Pod (CentOS/RH7)
○ 70 nodes with ~ 2600 cores system
○ 4 “fat” nodes with 1TB memory RAM
○ 15 GPU nodes (Quad NVIDIA V100/32GB with NVLINK)
○ GPU Development node (P100, T4)

● Published papers should acknowledge CSC - https://csc.cnsi.ucsb.edu/publications

Request access: https://csc.cnsi.ucsb.edu/forms/user-account

● Condo Clusters
○ Guild (70 nodes) EOL
○ Braid (120 nodes, also has GPUs) fairly old now
○ Braid2 (20 nodes with some GPUs)

PIs buy nodes in the clusters, CSC handles infrastructure.

Pod Data Storage System
Home directory Space: /home/user_name

● Not unlimited quotas
○ Each dollar spent on storage is one not spent on compute
○ Keep it to a TB or two?

Network mounted scratch file Storage: /scratch

● High speed but temp files
● 19 TB NFS mounted file system (/scratch)
● 70 TB NFS mounted file system (/bigscratch)

/csc/central - ‘near-line’

What do you do with your data - your local desktops, NAS, etc. Google drive?? AWS - S3
(cost, but small)

What Other Computational Resources are available

● UCSB Center for Scientific Computing (CSC) HPC clusters
○ Access to all UCSB staff, Pod (free) and condo (PI) clusters.

● Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support
(ACCESS)

○ National HPC resources funded by NSF. Free*
● NRP Nautilus Cluster (Consumer GPUs)

○ National cloud computing resource for accelerating machine learning on the GPUs. Free*
● Aristotle Cloud (LSIT)

○ UCSB local cloud resource, e.g. Jupyter hub
● Secure Compute Research Environment (SCRE)
● Other discipline specific UCSB resources

○ NCEAS, ERI, ECI, your local department
● Commercial Cloud Computing Resources:

○ AWS, Microsoft Azure, google Cloud Platform

https://help.lsit.ucsb.edu/hc/en-us/categories/360005255312-Jupyter

HPC Resources of Useful Information
● CSC Software Documentation

○ https://csc.cnsi.ucsb.edu/docs
● National HPC resources

○ ACCESS: https://access-ci.org/
○ San Diego Supercomputer Center: https://www.sdsc.edu/
○ NRP Nautilus: https://portal.nrp-nautilus.io/

● Transitioning from XSEDE to ACCESS by using Globus
○ https://www.globus.org/advance-to-access

● UCSB Aristotle Cloud (LSIT):
○ https://www.aristotle.ucsb.edu/ and

https://help.lsit.ucsb.edu/hc/en-us/categories/360005255312-Jupyter
● UCSB Campus Cloud Information:

○ https://www.it.ucsb.edu/explore-services/ucsb-campus-cloud
○ https://docs.cloud.ucsb.edu/

● More information, go to https://csc.cnsi.ucsb.edu/resources

https://csc.cnsi.ucsb.edu/docs
https://access-ci.org/
https://www.sdsc.edu/
https://portal.nrp-nautilus.io/
https://www.globus.org/advance-to-access
https://www.aristotle.ucsb.edu/
https://help.lsit.ucsb.edu/hc/en-us/categories/360005255312-Jupyter
https://www.it.ucsb.edu/explore-services/ucsb-campus-cloud
https://docs.cloud.ucsb.edu/
https://csc.cnsi.ucsb.edu/resources

Connecting to the POD

● For the Windows system, you can use
PuTTY ssh client

○ PuTTY:
https://www.chiark.greenend.org.uk/~sgtatham/putt
y/latest.html

○ Xshell: https://www.netsarang.com/en/xshell/
○ Mobaxterm: https://mobaxterm.mobatek.net/
○ Xming:

http://www.straightrunning.com/XmingNotes/
● For the Mac or Linux system, you can open

the terminal and ssh command
○ $ ssh your_user_name@pod.cnsi.ucsb.edu

pod.cnsi.ucsb.edu

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.netsarang.com/en/xshell/
https://mobaxterm.mobatek.net/
http://www.straightrunning.com/XmingNotes/

Connecting to the POD

● For the Windows system, open a
‘powershell’ window (type powershell in the
search bar)

● For the Mac or Linux system, you can open
the terminal (in Applications->Utilities)

● From either - use the ssh command
○ $ ssh your_user_name@pod.cnsi.ucsb.edu

Connecting to the POD

● Important: Remote (non UCSB) login via the VPN client:
○ https://www.ets.ucsb.edu/pulse-secure-campus-vpn/get-connected-campus-vpn

● For the Linux user, the steps are as same as for Mac users.
● If the VPN GUI does not work, please use VPN command line (CLI).

○ $ sudo apt install openconnect network-manager-openconnect network-manager-openconnect-gnome

○ $ sudo openconnect --protocol=nc https://ps.vpn.ucsb.edu/ra

○ After prompting for your sudo password, you will be prompted for your username - this is your UCSB

NetID.

○ Next, you will be prompted for your UCSB NetID password.

○ When prompted for "password#2", refer to the Step 4 instructions above (or the instructions in your

terminal that should appear after you type your sudo password) to complete your Duo authentication.

○ Open one new Terminal window and ssh login to the POD/Braid2 cluster.

https://www.ets.ucsb.edu/pulse-secure-campus-vpn/get-connected-campus-vpn
https://ps.vpn.ucsb.edu/ra

Basic Linux Commands

● Listing files (ls)
● Print Working Directory (pwd)
● Change Directory (cd)
● Make Directory (mkdir)
● Copy (cp)
● Moving Files (mv)
● Remove Files (rm)
● Secure Copy (scp)
● Display beginning/end of file (head/tail)
● View file (cat)
● pipes
● Display manual for a command (man)
● nano, vim, or emacs to edit your file.

Basic Linux Commands (ls & pwd)

● The ls (list) command files and directories in a directory.
○ General syntax:

ls [OPTIONS] [FILENAME]

○ OPTIONS include:

-l long listing, includes file date and size

-a displays all files

○ Example: $ ls -al /home/jay
■ ls: command
■ -al: flag
■ /home/jay: argument

● pwd stands for print working directory.

$ pwd

Basic Linux Commands (cd)

● The cd (change directory) command is used to change one directory to
another.
○ General syntax:

cd [DIRECTORY]

○ Change your present directory to the parent directory:

$ cd ..

○ Change your present directory to the home directory:

$ cd ~

○ .: your current directory

Basic Linux Commands (mkdir & cp)

● The mkdir (make directory) command creates a new directory.
○ General syntax:

mkdir [OPTIONS] Folder_name

● The touch command creates a new file.
○ General syntax:

touch file_name

● The cp (copy) command is used to copy a file or directory.
○ General syntax:

cp [OPTIONS] Source Destination

○ OPTIONS include:

-r recursively copy a directory, all files and subdirectories inside it.

Basic Linux Commands (mv & rm)

● The mv (move) command is used to move or rename a file or directory.
○ General syntax:

mv Source Destination

● The rm (remove) command is used to delete a file or directory.
○ General syntax:

rm [OPTIONS] file_name

○ OPTIONS include:
■ -r recursively delete a directory, all files and subdirectories inside it.

○ Important: After rm or rm -r command is executed, all files are gone and can’t find in recycle
bin.

Basic Linux Command (head, tail, and cat)

● The head/tail command is used to display the starting/ending lines of the file.
○ General syntax:

head [options] file_name

○ Print the first n line

$ head -n file_name

○ Print the last n line

$ tail -n 5 file_name

● The cat (catenate) command is used to display the entire file on the screen.
○ General syntax:

cat file_name

File Transfer

● The scp (secure copy) command is used to transfer files between two
locations.

○ General syntax:

scp [OPTIONS] LOCAL REMOTE

scp [OPTIONS] REMOTE LOCAL

scp [OPTIONS] REMOTE REMOTE

○ OPTIONS include:

-r recursively copy a directory, all files and subdirectories inside it.

More Linux Resource Information

● UCSB Software Carpentries
○ Introduction to the Unix Shell and Version Control with Git

(https://ucsbcarpentry.github.io/2022-10-18-ucsb-bash-git/)

https://ucsbcarpentry.github.io/2022-10-18-ucsb-bash-git/

File Transfer

● How do I uploaded data & download my
files?

○ Graphical User Interface (GUI)
■ Filezilla: https://filezilla-project.org/
■ Cyberduck: https://cyberduck.io/

○ Command-Line Interface (CLI)
■ “scp” command

● FileZilla
○ Host: pod.cnsi.ucsb.edu
○ Username: your_user_name
○ Password: your_password
○ Port: 22

● Globus (for larger files transfers)
○ https://csc.cnsi.ucsb.edu/docs/globus-v5-new

Filezilla

https://filezilla-project.org/
https://cyberduck.io/
https://csc.cnsi.ucsb.edu/docs/globus-v5-new

Key points to Use Cluster

There are 70+ computed nodes on the POD cluster, but there are only 2 login
nodes.

● What does it mean?
● It means you are sharing these two login nodes with many other users when

you are login. Running intensive programs on the login node will cause the
login nodes to be slow for all users.

○ Login nodes are for editing files, transfering files, changing permissions, submitting jobs, and
other “small-intensive” tasks.

○ We recommend to use interactive for interactive runs (e.g. Compiling, installation, testing)
○ For long running jobs: submit jobs to the queue
○ $ srun -N 1 -n 1 -p batch --time=1:00:00 --pty bash -i

You can’t monopolize cluster - limit jobs/cors

Interactive Computing

● Interactive computing refers to software which accepts input from the user as
it runs. Interactive computing involves real-time user inputs to perform tasks
on a set of compute node(s) including:

○ Coe development, real-time data exploration, etc.
○ Used when applications have large data sets or are too large to download to local device, or

too large to compute on the local device
○ Actions performed on remote compute nodes as a result of user input or program out.

● To request an interactive computing node with 4 cores for 4 hours:

$ srun -N 1 -n 4 -p batch --time=4:00:00 --pty bash -i

● To request an interactive computing GPU node for 4 hours:

$ srun -N 1 -n 1 -p gpu –gres=gpu:1 --time=4:00:00 --pty bash -i

Producible and Portable Software Environment

Conda

● Beginner
● Experience with Conda
● Frequently changing

dependencies
● Support on Linux, Mac, and

Windows
● Run on native OS

HPC Containers

● Advanced User
● Experience with containers
● Often setup for a single tool
● Support on Linux, Mac and

Windows require a VM
● Run on packaged OS, e.g.

Ubuntu

● For more details about the Container will offer in the future quarter.

Conda Environment

● Package management system
○ Conda install and update open source packages (e.g. numpy, scipy, pytorch), and their

dependencies
● Environment management system

○ You can use conda to create, load, and switch between multiple different environments
○ Multiple versions of software packages can co-exist without interference

● Multi-platform (Linux, MacOS, and Windows)
○ Conda environment are portable and can be installed on multiple platforms

● Multi-language (Python, R, etc.)

Environment_1:

pytorch==2.0.0
pytorch-cuda==11.7

Environment_2:

pytorch==1.13.1
cpuonly

Environment_3:

pytorch==1.13.1
pytorch-cuda==11.6

Conda Environment

● Download and Install Anaconda3
○ $ wget https://repo.anaconda.com/archive/Anaconda3-2023.07-2-Linux-x86_64.sh
○ $ sh Anaconda3.*.sh

● Activate your conda environment
○ $ source your_conda_directory/bin/activate

● Create a Conda environment
○ $ conda create --name my_env_1

● Activate your environment
○ $ conda activate my_env_1

● Install packages
○ $ conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 cpuonly -c pytorch

● List your Conda environment
○ $ conda env list

● Deactivate conda environment
○ $ conda deactivate

https://repo.anaconda.com/archive/Anaconda3-2023.07-2-Linux-x86_64.sh

Modules: Finding and Using Software on the POD

● Module system provides for the dynamics modification of a user’s
environment.

● Module commands allow the user to add applications and libraries to your
environment.

● This allows us to simultaneously and safely provides several versions of the
same softwares.

● All clusters have a default programming environment loaded for you when you
login.

● There are some functional software are not modularized in /sw directory.
Please take a look if you need.

○ E.g. /sw/cnsi, or /sw/chem
■ Add to path in .bashrc or .bash_profile

Modules: Finding and Using Software on the POD

1. List available modules

2. Search available modules for MatLab

3. Load the MatLab module

$ module avail
…

$ module avail MatLab
--- /sw/modulefiles ---
MatLab/R2016b MatLab/R2018a MatLab/R2018b MatLab/R2019a MatLab/R2019b MatLab/R2021b

$ module load MatLab/R2021b

Modules: Finding and Using Software on the POD

4. Unload the MatLab module

5. Purge all modules

6. List currently loaded modules

$ module unload MatLab/R2021b

$ module purge

$ module list
Currently Loaded Modulefiles:
 1) autotools 2) prun/1.2 3) gnu/5.4.0 4) ohpc

Batch Computing

● As computational and data requirements grow, researchers may find that they
need to make a transition from local resources (e.g., laptop, desktop) to
computer cluster or national HPC system.

● Jobs on these shared resources are typically executed under the control of a
batch submission system such as SLURM, PBS, etc.

● Jobs need to be configured so that the application(s) can be run
non-interactively and at a time determined by the scheduler.

● The user needs to specify the job duration, hardware requirements, and
partition. This is done with a batch script.

You can’t monopolize cluster - limit jobs/cors

Job Submission Script

● When you login to the Cluster, you are on the login node. This node is NOT
for running BIG calculations!

● All jobs must be submitted to the queue - it just allocate nodes.
● Submission to the queue requires a job script to be written.
● Job script need to specify the resource that you need. There are three basic

units:
○ Number of Nodes
○ Number of Cores
○ Time (Optional)

● Other resource you might need to add such as: job name, memory, reminder
email, etc.

Simple Scheduling Algorithms

● Backfilling
○ The scheduler maintains the "First Come,

First Serve" concept without preventing
long-running jobs from executing.

○ The scheduler checks whether the first job in
the queue can be executed:

■ If true, the job is executed without
further delay.

■ If false, the scheduler looks for the next
job that can be executed without
extending the waiting time of the first
job in the queue and runs it.

○ Jobs that only need a few computing
resources are easily “backfillable.”

■ Small jobs will usually encounter
shorter queue times.

Ref:
https://docs-research-it.berkeley.edu/services/hig
h-performance-computing/user-guide/running-you
r-jobs/why-job-not-run/

https://docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/running-your-jobs/why-job-not-run/
https://docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/running-your-jobs/why-job-not-run/
https://docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/running-your-jobs/why-job-not-run/

Simple Slurm Job Submission script

#!/bin/bash -l

#SBATCH —nodes=1 –ntasks-per-node 1

module load MatLab/R2018a

cd $SLURM_SUBMIT_DIR

/bin/hostname

matlab -nodisplay -nodesktop -nosplash <
my-inputfile.m

Slurm job script file: slurm-serial.job
Slurm job script file: slurm-mpi.job

#!/bin/bash -l

#SBATCH —nodes=1 –ntasks-per-node 12

module load intel/18

cd $SLURM_SUBMIT_DIR

/bin/hostname

mpirun -np $SLURM_NPROCS ./a.out >& logfile

● There are three simple Slurm script files in your directory: slurm-mpi2.job,
slurm-mpi.job, and slurm-serial.job.

$ sbatch slurm-serial.job ‘or’ $ sbatch -p short slurm-serial.job

Example Slurm Job Submission script

#!/bin/bash ### Set linux shell: Telling the shell to run the script using the batch
#SBATCH -J 'testJob' ### Job Name
#SBATCH --nodes=1 ### No. of Nodes
#SBATCH --ntasks=1 ### No. of Tasks
#SBATCH -p gpu ### Submit the job to Partition
#SBATCH –gres=gpu:1 ### Request 1 GPU
#SBATCH -o outLog ### Output Log File (Optional)
#SBATCH -e errLog ### Error Log File (Optional but suggest to have it)
#SBATCH -t 00:10:00 ### Job Execution Time
#SBATCH --mail-user=usernam@ucsb.edu ### Mail to you (Optional)
#SBATCH --mail-type ALL ### Mail send you when the job starts and end (Optional)

module purge all
module load cuda/11.6 ### Load softwares that the job depends on to execute
source ~/anaconda1/bin/activate
conda activate my_env_1

cd $SLURM_SUBMIT_DIR/ ### Absolute path of the current working directory when you submit the job

python my_python.py

Slurm job script file: job.s

mailto:jaychi@ucsb.edu

How to Submit and Monitor Your Job

● Once you have a job script, you may submit this script to SLURM using the
sbatch command. SLURM will find an available compute node or set of
compute nodes and run your job there, or leave your job in a queue until
some resources become available.

● List all current jobs from the user.

● Stop and delete the Job

$ sbatch job.s
Submitted batch job 1234567

$ squeue -u your_user_name
$ showq your_user_name

$ scancel 1234567

How to Submit and Monitor Your Job

● List all partitions on the cluster

$ sinfo

● List the partition who are using

$ squeue -p short

● Report the job expected start time

$ squeue --start -j job_ID

Running Jobs on Pod (Slurm)

● Start/submit a job: $ sbatch job.s
● Check status of the running jobs: $ squeue -u user_name

$ showq user_name

● Delete a running job: $ scancel job_id

● Available partition:
○ Short partition: running under 2 hrs

■ #SBATCH -p short
○ Large memory partition: running the longest 37 days

■ #SBATCH -p largemem
○ GPU partition: running the longest 7 days

■ #SBATCH -p gpu

Ack!

• Acknowledgements - https://csc.cnsi.ucsb.edu/publications

Please acknowledge the CSC in publications and presentations if you are using our
facility’s computational resources (including staff involvement) in your research.

“We acknowledge support from the Center for Scientific Computing from the CNSI, MRL:
an NSF MRSEC (DMR-2308708) and NSF CNS-1725797.”

For users of GPU nodes, please add the grant number NSF OAC-1925717

https://csc.cnsi.ucsb.edu/publications

Questions and Thought

● What else content should we cover?
● Other ideas for a workshop?

○ Running Parallel Python / Matlab / R on the Cluster, Mathematica, Lumerical,
Singularity/Docker Container, etc.

● More Information:

https://csc.cnsi.ucsb.edu/

https://csc.cnsi.ucsb.edu/

