
Computational Linguistics

KS-DFT

UC SANTA BARBARA HPC Workshop 2
Feb. 28, 2024

02:00 – 03:00 pm (followed by dessert)
Location: Elings Hall 1601

Register @ https://csc.cnsi.ucsb.edu

Quickly start using HPC resource at UCSB
• SLURM Array and Job Dependency
• Running Jupyter Notebook/Lab and

VS Code on the Cluster
• NSF ACCESS allocation
• National & Commercial Cloud

Computing Resources

Introduction to
High-Performance Computing (HPC)

Paul Weakliem, Fuzzy Rogers, and Jay Chi

February 28, 2024

UC SANTA BARBARA

Paul Weakliem, PhD
Co-Director

Center for Scientific Computing &
California Nanosystems Institute

Eling 3231
weakliem@cnsi.ucsb.edu

Fuzzy Rogers
Research Computing Administrator
Center for Scientific Computing &

Materials Research Laboratory
MRL 2066B

fuz@mrl.ucsb.edu

Yu-Chieh “Jay” Chi, PhD
Research Computing Consultant
Center for Scientific Computing &
Enterprise Technology Services

Elings 3229
jaychi@ucsb.edu

Our Team

mailto:weakliem@cnsi.ucsb.edu
mailto:fuz@mrl.ucsb.edu
mailto:jaychi@ucsb.edu

Our Research IT Partners

Mike Edwards
Director of Engineering Computing
Infrastructure
3152A Harold Frank Hall
mcs@engineering.ucsb.edu

Michael Colee
Director of Earth Research
Institute Computing (ERI)
6703 Ellison Hall
mtc@eri.ucsb.edu

Ted Cabeen
Director of Life Science
Computing Group (LSCG)
2306 Life Science
ted.cabeeen@lscg.ucsb.edu

Andreas Boschke
Director of Infor. Infrastructure
at Letter & Science IT (LSIT)
2306 Life Science
andreas@lsit.ucsb.edu

mailto:mcs@engineering.ucsb.edu
mailto:mcs@engineering.ucsb.edu
mailto:mcs@engineering.ucsb.edu
mailto:mcs@engineering.ucsb.edu

Agenda

● HPC Workflow
● SLURM Array
● SLURM Job Dependency
● Running Jupyter Notebook/Lab and VS Code on the cluster

○ Running Jupyter Notebook/lab on the POD/Braid2
○ Running VS Code on the POD/Braid2
○ Google Colab
○ Running Jupyter Lab on the SDSC Expanse

● Introduction to National HPC/Supercomputer resources
○ ACCESS allocation
○ Cloud Computing: JetStream2 from Indiana University

General HPC Workflow

Your local PC

Login Node

SLURM
Job Schedule

Computing
Node

6. Grab Results

5. Get Results

3. Job Runs on the Cluster

1. ssh

2. sbatch

4. Job Running

Computing
Node

Slurm script

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Computing
Node

Job Arrays

● According to the Slurm Workload Manager, “Job arrays offer a mechanism for submitting and
managing collections of similar jobs quickly and easily, … . All jobs must have the same initial
options (e.g., size, time limit, etc.)”

● In general, job arrays are useful for applying the same processing routine to a collection of multiple
input data files. Job arrays offer a very simple way to submit a large number of independent
processing jobs.

#!/bin/bash
#SBATCH -J 'slurmArray' ### Job Name
#SBATCH --nodes=1 ### No. of Nodes
#SBATCH --ntasks=1 ### No. of Tasks
#SBATCH -p short ### Submit the job to Partition (Optional)
#SBATCH -o outLog_%A_%a ### Output Log File (Optional)
#SBATCH -e errLog_%A_%a ### Error Log File (Optional but suggest to have it)
#SBATCH -t 00:10:00 ### Job Execution Time
#SBATCH –array=0-3
#SBATCH --mail-user=usernam@ucsb.edu ### Mail to you (Optional)
#SBATCH --mail-type ALL ### Mail send you when the job starts and end (Optional)

https://slurm.schedmd.com/job_array.html
mailto:jaychi@ucsb.edu

Slurm Job Array Submission script

● The %A_%a construct in the output and error file names is used to generate unique output and error
files based on the master job ID (%A) amd the array-tasks ID (%a).

● Job Array indices can be specified array index values, a range of index values, and an optional step
size.

Submit a job array with index values between 0 and 15
#SBATCH –array=0-15

Submit a job array with index values of 1, 3, 9, and 15
#SBATCH –array=1, 3, 9, 15

Submit a job array with index values between 1 and 16 with a step size of 2
#SBATCH –array=1-16:2

Slurm Job Array Submission script

#!/bin/bash
#SBATCH -J 'slurmArray’
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH -p short
#SBATCH -o outLog_%A_%a
#SBATCH -e errLog_%A_%a
#SBATCH -t 00:10:00
#SBATCH –array=0-3

echo "SLURM_JOB_ID: " $SLURM_JOBID
echo "SLURM_ARRAY_JOB_ID: " $SLURM_ARRAY_JOB_ID
echo "SLURM_ARRAY_TASK_ID: " $SLURM_ARRAY_TASK_ID
echo "SLURM_ARRAY_TASK_COUNT: " $SLURM_ARRAY_TASK_COUNT
echo "SLURM_ARRAY_TASK_MAX: " $SLURM_ARRAY_TASK_MAX
echo "SLURM_ARRAY_TASK_MIN: " $SLURM_ARRAY_TASK_MIN

SLURM_JOB_ID: 3405632
SLURM_ARRAY_JOB_ID: 3405629
SLURM_ARRAY_TASK_ID: 0
SLURM_ARRAY_TASK_COUNT: 4
SLURM_ARRAY_TASK_MAX: 3
SLURM_ARRAY_TASK_MIN: 0

SLURM_JOB_ID: 3405633
SLURM_ARRAY_JOB_ID: 3405629
SLURM_ARRAY_TASK_ID: 1
SLURM_ARRAY_TASK_COUNT: 4
SLURM_ARRAY_TASK_MAX: 3
SLURM_ARRAY_TASK_MIN: 0

SLURM_JOB_ID: 3405629
SLURM_ARRAY_JOB_ID: 3405629
SLURM_ARRAY_TASK_ID: 3
SLURM_ARRAY_TASK_COUNT: 4
SLURM_ARRAY_TASK_MAX: 3
SLURM_ARRAY_TASK_MIN: 0

Dependency Jobs

● You can schedule jobs depending on the termination status of previously scheduled jobs. This way,
you can concatenate your jobs into a pipeline or expand to more complicated dependencies.

● For example, job1.s is a submission script you plan to submit a batch job:

#!/bin/bash
#SBATCH -J 'JobDep1' ### Job Name
#SBATCH --nodes=1 ### No. of Nodes
#SBATCH --ntasks=1 ### No. of Tasks
#SBATCH -p short ### Submit the job to Partition (Optional)
#SBATCH -o outLog_%x_%j ### Output Log File (Optional)
#SBATCH -e errLog_%x_%j ### Error Log File (Optional but suggest to have it)
#SBATCH -t 00:10:00 ### Job Execution Time
#SBATCH --mail-user=usernam@ucsb.edu ### Mail to you (Optional)
#SBATCH --mail-type ALL ### Mail send you when the job starts and end (Optional)

Run Bash Command
echo "***** My first Program *****"
echo "***** Prepare the Data *****"
echo "*****Done for Parparation *****"
echo "Time: " $(date +"%T")

mailto:jaychi@ucsb.edu

Dependency Jobs

● Submit the job script to the Slurm job scheduler from the POD login node:

● You can submit another job that is put on the waiting list of the queue.

● This command indicates that job2.s will be put in the queue after the job ID 1234567 is terminated for any
reason. The dependency option flag can be after, afterany, aftercorr, afterok, and afternotok.

● The following command would submit 2 jobs with respect to their dependencies.

$ sbatch job.s
Submitted batch job 1234567

$ sbatch -dependency=aftercorr:1234567 job2.s

First Job
jobID_1=$(sbatch job1.s | cut -f 4 -d’ ‘)

Second Job - this job depends on the first job
sbatch --dependency=aftercorr:$jobID_1 job2.s

Slurm Job Dependency Submission script

after This job is execution after the specified jobs have begun execution

afterany This job can begin execution after the specified jobs have been
terminated

aftercorr A task of this job array can begin execution after the corresponding task
ID in the specified job has completed successfully

afternotok This job can begin execution after the specified jobs have terminated in
some failed state

afterok This job can begin execution after the specified jobs have been
successfully executed

singleton This job can begin execution after any previously launched jobs sharing
the same job name and the user has terminated

Slurm Job Dependency Submission script
Slurm job script file: job1.s

#!/bin/bash
#SBATCH -J 'JobDep1' ### Job Name
#SBATCH --nodes=1 ### No. of Nodes
#SBATCH --ntasks=1 ### No. of Tasks
#SBATCH -p short ### Submit the job to Partition (Optional)
#SBATCH -o outLog_%x_%j ### Output Log File (Optional)
#SBATCH -e errLog_%x_%j ### Error Log File (Optional but suggest to have it)
#SBATCH -t 00:10:00 ### Job Execution Time
#SBATCH --mail-user=usernam@ucsb.edu ### Mail to you (Optional)
#SBATCH --mail-type ALL ### Mail send you when the job starts and end (Optional)

Run Bash Command
echo "***** My first Program *****"
echo "***** Prepare the Data *****"
echo "***** Done for Parparation *****"
echo "Time: " $(date +"%T")

mailto:jaychi@ucsb.edu

Slurm Job Dependency Submission script
Slurm job script file: job2.s

#!/bin/bash
#SBATCH -J 'JobDep2' ### Job Name
#SBATCH --nodes=1 ### No. of Nodes
#SBATCH --ntasks=1 ### No. of Tasks
#SBATCH -p short ### Submit the job to Partition (Optional)
#SBATCH -o outLog_%x_%j ### Output Log File (Optional)
#SBATCH -e errLog_%x_%j ### Error Log File (Optional but suggest to have it)
#SBATCH -t 00:10:00 ### Job Execution Time
#SBATCH --mail-user=usernam@ucsb.edu ### Mail to you (Optional)
#SBATCH --mail-type ALL ### Mail send you when the job starts and end (Optional)

Run Bash Command
echo "***** Start the Program *****"
echo "***** Code1 is Running *****"
echo "***** Code2 is Running *****"
echo "***** End the Program *****"
echo "Time: " $(date +"%T")

mailto:jaychi@ucsb.edu

Slurm Job Dependency Submission script
Slurm job script file: job3.s

#!/bin/bash
#SBATCH -J 'JobDep3' ### Job Name
#SBATCH --nodes=1 ### No. of Nodes
#SBATCH --ntasks=1 ### No. of Tasks
#SBATCH -p short ### Submit the job to Partition (Optional)
#SBATCH -o outLog_%x_%j ### Output Log File (Optional)
#SBATCH -e errLog_%x_%j ### Error Log File (Optional but suggest to have it)
#SBATCH -t 00:10:00 ### Job Execution Time
#SBATCH --mail-user=usernam@ucsb.edu ### Mail to you (Optional)
#SBATCH --mail-type ALL ### Mail send you when the job starts and end (Optional)

Run Bash Command
echo "***** The Last Step *****"
echo "***** Analyze the Data *****"
echo "***** Done for analyzing data *****"
echo "Time: " $(date +"%T")

mailto:jaychi@ucsb.edu

Slurm Job Dependency Submission script
batch script file: depJOB.s

#!/bin/bash

First Job
jobID_1=$(sbatch job1.s | cut -f 4 -d' ')

Second Job - this job depends on the first job
jobID_2=$(sbatch --dependency=aftercorr:$jobID_1 job2.s | cut -f 4 -d' ')

Third Job - this job also depends on the second job
sbatch --dependency=aftercorr:$jobID_2 job3.s

● Execute the batch job script from the POD login node:

$ sh depJOB.s
Submitted batch job 1234567

Running Interactive Job

● Interactive computing refers to software which accepts input from the user as
it runs. Interactive computing involves real-time user inputs to perform tasks
on a set of compute node(s) including:

○ Coe development, real-time data exploration, etc.
○ Used when applications have large data sets or are too large to download to local device, or

too large to compute on the local device
○ Actions performed on remote compute nodes as a result of user input or program out.

● To request an interactive computing node with 4 cores for 4 hours:

$ srun -N 1 -n 4 -p batch --time=4:00:00 --pty bash -i

● To request an interactive computing GPU node for 4 hours:

$ srun -N 1 -n 1 -p gpu –gres=gpu:1 --time=4:00:00 --pty bash -i

Why Run Jupyter Notebook/Lab, VS Code on the cluster?

● Computational resource requirement (GPU, multiple Cores, and etc.)
● Large memory requirement for your data
● Convenience to analyze your large scale data on the cluster
● Scaling up to long runtimes

Set Up Your Jupyter Notebook on the POD/Braid2

● Get to a compute node from the login node

 $ srun -N 1 -n 1 -p gpu –gres=gpu:1 --time=04:00:00 --pty bash -i

● Make sure your conda environment is activated

● Activate the specific conda environment

$ conda activate pytorch112_gpu116

Set Up Your Jupyter Notebook on the POD/Braid2

● Make sure the jupyter has been installed in the conda environment

$ conda list jupyter

● Get the ip from the host

$ hostname -i

● Launch the Jupyter notebook from the server

$ jupyter-notebook --no-browser --port=8888 --ip=10.1.50.122

Set Up Your Jupyter Notebook on the POD/Braid2

● Open a new terminal in order to access the Jupyter notebook from your remote
machine over ssh
$ ssh -N -L 8888:10.1.50.122:8888 your_user_name@pod.cnsi.ucsb.edu

● Open a browser window, copy the
http://127.0.0.1:8888/tree?token=44b5cf8a93ea5edf5e70f202e81480e07aef19690bc
d2c22 and pate it to the browser.

● After you finish your job, don’t forget to release your resource.
$ scancel your_job_id

mailto:your_user_name@pod-login1.cnsi.ucsb.edu
http://127.0.0.1:8888/tree?token=44b5cf8a93ea5edf5e70f202e81480e07aef19690bcd2c22
http://127.0.0.1:8888/tree?token=44b5cf8a93ea5edf5e70f202e81480e07aef19690bcd2c22

Set Up Your Jupyter Notebook on the Braid

● Get to a compute node from the login node

 $ qsub -I -l nodes=1:ppn=2 -l walltime=02:00:00

● Make sure your conda environment is activated

● Get the ip from the host

$ hostname -i

Set Up Your Jupyter Notebook on the Braid

● Make sure the jupyter has been installed in the conda environment

$ conda list jupyter

● Launch the Jupyter notebook from the server

$ jupyter notebook --no-browser --port=8888 --ip=10.0.90.50

Set Up Your Jupyter Notebook on the Braid

● Open a new terminal in order to access the Jupyter notebook from your local machine over ssh
$ ssh -oHostKeyAlgorithms=+ssh-rsa -N -L 8888:10.0.90.50:8888 your_username@braid.cnsi.ucsb.edu

● Open a browser window, copy the
http://127.0.0.1:8888/tree?token=b73f105eaedf5b950f9d799ece39154918961769e3c3349f and
pasta it to the browser.

mailto:your_username@braid.cnsi.ucsb.edu
http://127.0.0.1:8888/tree?token=b73f105eaedf5b950f9d799ece39154918961769e3c3349f

Connect Visual Studio Code to POD

● According to the Wikipedia, “Visual Studio Code (VS Code) is a source code editor that support a
variety of programming languages, including C, C#, C++, Fortran, Go, Java, JavaScript, Node.js,
Python, Rust, and Julia.”

● GitHub Copilot is a code completion tool developed by GitHub and OpenAI that assists users of
Visual Studio Code integrated development environments (IDEs) by autocompleting code.

● Get to a compute node from the login node

$ srun -N 1 -n 1 -p gpu –gres=gpu:1 --time=04:00:00 --pty bash -i

https://en.wikipedia.org/wiki/Visual_Studio_Code
https://code.visualstudio.com/

Connect Visual Studio Code to POD

● Connect VS Code locally to the Computing Node in HPC
○ Open VS Code command palette

○ Install Remote - SSH

● Configuring SSH
○ Open SSH config file
○ Add the following config detail

Connect Visual Studio Code to POD

● Open VS Code command palette
○ Remote-SSH: Connect to Host

● Choose the computing node

● Disconnect to the HPC

● After you finish your job, don’t forget to release your
resource.
$ scancel your_job_id

Google Colab

● What is Google Colab?
○ Google Colab(Colaboratory) allows you to write and execute Python and R in your

browser with
■ No need to install packages
■ GPU access
■ Sharing with your partners

● Tutorial link
○ https://reurl.cc/Epg3M0

https://reurl.cc/Epg3M0

Getting Started to use Colab

Getting Started to use Colab

Executing the Code Block: Shift + return

Changing Runtime Type

Run Jupyter Notebook/Lab on the SDSC Expanse

● Connect to the Expanse Portal: https://portal.expanse.sdsc.edu/

https://portal.expanse.sdsc.edu/

Run Jupyter Notebook/Lab on the SDSC Expanse

ACCESS
Free National Supercomputer Resources

National Supercomputer Resources: ACCESS

● Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support
(ACCESS)

● ACCESS is an advanced computing and data resource supported by the
National Science Foundation (NSF).

● ACCESS Services include Allocations, Support, Operation and Metrics, along
with a Coordination Office

● Access website: https://access-ci.org/

https://access-ci.org/

National Supercomputer Resources: ACCESS

Four Allocation Opportunities to suit a
variety of needs (credit thresholds):

● Explore (400,000)
○ Best-suited for endeavors with light resource

requirements
■ Grad students can be PIs

● Discover (1,500,000)
○ Minimal effort to start production research

activities
■ Potential best-fit for Campus Champion

Allocations
● Accelerate (3,000,000)

○ More substantial resource requirements
■ Multi-grand research, Gateways, etc.

● Maximize (No upper limit)
○ For large-scale research project with extreme

resource needs
■ Will largely resemble XRAC process

Allocation Eligibility

● Available to any research or educator as US academic, non-profit research, or
educational institution.

● Can be in any official position including adjunct or instructional
● Postdoctoral researchers can be a PI of any project type
● Graduate students can lead an “Explore” ACCESS allocation under their

advisor’s guidance
● NSF Graduate Fellows and Honorable mentions can apply for “Discover”

allocations
● Ref: https://allocations.access-ci.org/access-allocations-policies#eligibility

https://allocations.access-ci.org/access-allocations-policies#eligibility

Comparison Table

Ref:
https://allocations.access-ci.org/pre
pare-requests-overview

https://allocations.access-ci.org/prepare-requests-overview
https://allocations.access-ci.org/prepare-requests-overview

National Supercomputer Resources: ACCESS

● ACCESS consists of a set of
Resource Providers (PRs) that offer
a wide range of computational
resources including systems such
as high-performance computing
(HPC) clusters, virtualization
(cloud-style) clusters, high
throughput computing (HTC)
clusters, massive storage clusters,
large memory clusters, and
composable clusters.

Resource Providers (PRs)

National Supercomputer Resources: ACCESS

National Supercomputer Resources: ACCESS

SDSC HPC for UC

● Request HPC@UC at https://www.sdsc.edu/support/hpc_uc_apply-exp.html
● Up to 500K core-hours of computing, associated data storage, and access to

SDSC expertise to assist their research team.
● Awards are active for one year. NO supplements, renewals or Extensions
● Applicants must not have an active ACCESS award
● Developed to support onboarding to ACCESS and large, formal allocation

requests
● SDSC staff will assist in developing these allocation applications
● Applications are reviewed on an ongoing basis. Applicants will be notified

within 10 business days of the review decision.
● Ref: https://www.sdsc.edu/support/hpc_uc_apply-exp.html

https://www.sdsc.edu/support/hpc_uc_apply-exp.html
https://www.sdsc.edu/support/hpc_uc_apply-exp.html

Cloud Computing: Indiana JstStream2

RP: Indiana JstStream2

Ref:
https://docs.jetstream-cloud.org/

https://docs.jetstream-cloud.org/

RP: Indiana JstStream2

RP: Indiana JstStream2

Cloud Computing: Amazon Web Services (AWS)

● If you choose to use AWS, it is recommended to take advantage of the Campus Cloud Landing Zone (LZ)
for AWS. A UCSB purchases order is required to request an Campus Cloud account
(https://ucsb.github.io/campus-cloud-docs/getting-started/#procurement).

Important: You may need the help of a PI or Department Purchasing person to create a Purchase Order which is necessary to
request an account in the Campus Cloud.

https://ucsb.github.io/campus-cloud-docs/getting-started/#procurement

Amazon Elastic Compute Cloud (Amazon EC2)

● Use Case:
○ Run cloud-native and enterprise applications
○ Scale for HPC applications
○ Train and deploy ML applications

● EC2 Instance Types
○ General Purpose
○ Compute Optimized
○ Memory Optimization
○ Accelerated Computing
○ Storage Optimized

● More Information
○ Amazon EC2: https://aws.amazon.com/ec2/
○ Amazon EC2 Pricing Estimation: https://aws.amazon.com/ec2/pricing/on-demand/

https://instances.vantage.sh/

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/pricing/on-demand/
https://instances.vantage.sh/

Ronin Platform

Contact with Bill Doering: billd@ucsb.edu

● If you like to use AWS to be your cloud
computing platform, RONIN removes the
enormous complexity of AWS offerings and
provides an easy-to-use self-service platform.

● UCSB provides RONIN information support if
you like to use AWS to do your computing
research via the RONIN platform.

mailto:billd@ucsb.edu

Ronin Platform: Control Your AWS Cost

Ack!

• Acknowledgements - https://csc.cnsi.ucsb.edu/publications

Please acknowledge the CSC in publications and presentations if you are using
our facility’s computational resources (including staff involvement) in your
research.

“We acknowledge support from the Center for Scientific Computing from the CNSI,
MRL: an NSF MRSEC (DMR-2308708) and NSF CNS- 1725797.”

For users of GPU nodes, please add the grant number NSF OAC-1925717

https://csc.cnsi.ucsb.edu/publications

Questions and Thought

● What else content should we cover?
● Other ideas for a workshop?

○ Running Parallel Python / Matlab / R on the Cluster, Mathematica,
Singularity/Docker Container, etc.

● More Information:

https://csc.cnsi.ucsb.edu/

https://csc.cnsi.ucsb.edu/

