
Computational Linguistics

KS-DFT

UC SANTA BARBARA HPC Workshop 1
Nov. 04 and 05 , 2025

11:30 – 12:30 pm (followed by pizza)
Location: Elings Hall 1605

Quickly start using HPC resource at UCSB
• What is HPC?
• Quickly get Started to Use HPC
• Basic Linux Commands
• Basic Slurm Commands
• Producible and Portable Software

EnvironmentRegister @ https://csc.cnsi.ucsb.edu

Introduction to
High-Performance Computing (HPC)

Paul Weakliem, Fuzzy Rogers and Jay Chi

November 04 and 05, 2025

UC SANTA BARBARA

Paul Weakliem, PhD
Co-Director

Center for Scientific Computing &
California Nanosystems Institute

Elings 3231
weakliem@cnsi.ucsb.edu

Fuzzy Rogers
That guy in the MRL

Center for Scientific Computing &
Materials Research Laboratory

MRL 2066B
fuz@ucsb.edu

Yu-Chieh “Jay” Chi, PhD
Research Computing Consultant
Center for Scientific Computing &
Information Technology Services

Elings 3213
jaychi@ucsb.edu

Ye Olde People Introductions

mailto:weakliem@cnsi.ucsb.edu
mailto:fuz@mrl.ucsb.edu
mailto:jaychi@ucsb.edu

Introduction (and disclaimer regarding slides!)

Many of you are here because your computational project workloads have
increased beyond the capacity of your local resources, such as laptops or
desktops. Specifically, you may consider utilizing a high-performance computing
(HPC) cluster.

● Generally used for very large scale calculations, or many medium scale
calculations. Primarily accessed via command line (CLI)

● How many linux command do you need to know for working in the Pure
Linux environment?
○ You don’t have to be a Linux expert.

● The actual HPC hardware is probably important
○ Hardware is important but not that interesting

Introduction

● In this workshop, you will learn
○ What is the Center for Scientific Computing (CSC) at UCSB?
○ Introduction to High-Performance Computing (HPC) at UCSB
○ Amdahl’s Law
○ Quickly get started to use cluster
○ File Transfer
○ Learn the basic of Linux Commands
○ Reproducible and Portable Software Environment
○ Learn the basic of Slurm (Simple Linux Utility for Resource Management)

commands to submit jobs to the cluster

What is Center for Scientific Computing (CSC)

What we are:

● A home for HPC and expertise with national supercomputing centers
leveraging CNSI, MRL, and ITS resources to enable researchers to focus on
the research project/education and not the infrastructure.

Center for Scientific Computing (CSC) Facilities

● High-Performance Computing (HPC) Cluster
○ Interconnected Linux servers & limited storage with high speed interconnect
○ Specialize node - GPUs, Large Memory
○ Resource management done automatically via SLURM
○ Long running calculation - upwards of 30+ days

What is Center for Scientific Computing (CSC)

Support Capabilities

● We provide the HPC computational infrastructure.
● We provide workshops, training, consultation, and knowledge bases to assist researchers.
● We provide user support, assistance with use of resource, and installation of applications.
● We work with your local IT staff to provide effective help.
● Regular working hours, realistically, 8:30 am - 5 pm Monday through Friday. But we try to

make sure the clusters are running near 24/7 (I’d say 365, but it’s UCSB and we’re a small
group)

We don’t upgrade our cluster system offen.

What is High-Performance Computing (HPC)?

● High-Performance Computing (HPC) allows scientists and engineers to solve complex science,
engineering, and business problem using applications that require high bandwidth, enhanced
networking, and very high compute capabilities. Ref: https://aws.amazon.com/hpc/

● Multiple computer nodes connected by a very fast interconnect.
● Each node contains many CPU cores (around 12-40 cores) and 4-6G RAM.
● Allows many users to run calculations simultaneously on nodes.
● Allows a single user to use many CPU caress incorporating multiple nodes.
● Often has high end (64 bit/high memory) GPUs

UCSB provides access and support for multiple HPC resources and educational/training/research support.

HPC is not always the only one solution!!! (see https://rcd.ucsb.edu for other options!!)

● Sometimes you need a faster desktop workstation
● Sometimes ‘Cloud’ is the right solution (need 1000 nodes, but only once every 3 months)
● Sometimes you might even need your own cluster …….

https://aws.amazon.com/hpc/
https://rcd.ucsb.edu

CSC Cluster Resource

● POD (Pod of Dolphins) - pod.cnsi.ucsb.edu
○ FREE … but Campus available, usually pretty busy
○ 64 CPU Compute nodes, 40 cores per node with 192GB RAM
○ 4 Large Memory nodes, 40 cores with 768 GB (up to 1.25TB) RAM
○ 13 GPU nodes, 4 * 32 GB Nvidia V100s & 24 cores per node with 192GB RAM
○ 1 GPU Development node with Nvidia P100 and T4 GPU
○ Published papers should acknowledge CSC - https://csc.cnsi.ucsb.edu/publications

● Condo Clusters - Braid & Braid2 - braid.cnsi.ucsb.edu & braid2.cnsi.ucsb.edu
○ Individual Faculty (PI) buy-In for access, CSC handles infrastructure
○ Braid: ~80 nodes, mix 12-32 cores, 64GB-192GB RAM, 3 4*Nvidia P100
○ Braid2: ~60 nodes, 24-64 cores, 256GB - 1TB RAM, 8 4*Nvidia A100

UCSB VPN is required to connect to the campus cluster from off-campus

● ACCESS (when you outgrow CSC, or other local resources)
○ National Supercomputer Center - ACCESS-CI https://access-ci.org
○ PSC, SDSC, TACC, JetStream2, etc.

http://pod.cnsi.ucsb.edu
https://csc.cnsi.ucsb.edu/publications
http://braid.cnsi.ucsb.edu
http://braid2.cnsi.ucsb.edu
https://access-ci.org

Pod Data Storage System
Home directory Space: /home/user_name

● Not unlimited quotas
○ Each dollar spent on storage is one not spent on compute (funded by either NSF (Pod), or CNSI and MRL)
○ Keep it to a TB or two?

Network mounted scratch file Storage: /scratch

● High speed but temporary files (purged after 90 days)
● 19 TB NFS mounted file system (/scratch)
● 70 TB NFS mounted file system (/bigscratch)

/csc/central - ‘near-line’

What do you do with your data - your local desktops, NAS, etc. Google drive?? AWS - S3
(cost, but small)

HPC Infrastructure & Message Passing Interface (MPI)

Network
Application
SEND

System
Buffer

Application
RECV

System
Buffer

data

data

data

MPI

Node X Node Y

Memory

Network/Shared File Storage System

Socket

core

core

core

core

core

core

Node

core

core

core

core

core

core

core

core

core

Socket

core

core

core

core

core

core

core

core

core

core

core

core

core

core

core

Memory

Socket

core

core

core

core

core

core

Node

core

core

core

core

core

core

core

core

core

Socket

core

core

core

core

core

core

core

core

core

core

core

core

core

core

core

High-Performance Computing Myths

Myth #1: High-Performance computing is for astrophysicists, engineers, climate
modelers and others working in traditionally math intensive fields

Myth #2: Throwing more hardware at a problem will automatically reduce the time
to solution

Myth #3: You need to be a programmer or software developer to make use of
high-performance computing

Communications Overhead
Node 0 Node 1

Node 2 Node 3

Grid Mesh Partition:
Computational fluid dynamics (CFD), magnetohydrodynamics
(MHD), climate, weather and other simulations involve solving
system of partial differential equation (PDE) on a grid that is
distributed across processors to achieve parallelization.

Periodic Boundary
Conditions:
Implementing
periodic boundary
conditions (PBCs)
with MPI requires
each process to
communicate data
with its neighboring
processes on the
opposite side of the
simulated domain.

Examples of some of the science done on CSC HPC
clusters

https://yilab.eemb.ucsb.edu/research/ecolo
gical-evolutionary-epigenomics

Ecological & Evolutionary Epigenomics

https://vandewalle.materials.ucsb.
edu/

Molecular Dynamics to understand
photonics and LEDs.

Field-Theoretic Simulation
*(soft materials, polymers)

https://mrlweb.mrl.ucsb.edu/~fr
edrickson/research.html

Typical calculation on
GPUs, running for days.

Typical calculations 120
cores for days Typical requirements for large memory

node

https://yilab.eemb.ucsb.edu/research/ecological-evolutionary-epigenomics
https://yilab.eemb.ucsb.edu/research/ecological-evolutionary-epigenomics
https://vandewalle.materials.ucsb.edu/
https://vandewalle.materials.ucsb.edu/
https://mrlweb.mrl.ucsb.edu/~fredrickson/research.html
https://mrlweb.mrl.ucsb.edu/~fredrickson/research.html

Parallel Computing Performance

Let’s consider the parallel speedup in relation to our ideal expectation.

● Number of processors = N
● Serial Run-Time = Ts
● Parallel Run-Time = Tp

● The speedup of the parallel program is

Parallel Computing Performance

However, our expected performance might not be approached due to the
computer hardware overhead. The Parallel Run-Time should be considered as

● P is the fraction of the code that can be parallelized
● To is the Run-Time unparalleled Overhead that can be written as

Amdahl’s Law and Limits on Scalability

Amdahl’s law describes the absolute limit on the speedup of a code as function of
the proportion of the code that can be parallelized and the number of processors.
This is the most fundamental law of parallel computing.

● S is the speedup
● P is the fraction of the code that can be parallelized
● N is the number of processors

Amdahl’s Law and Limits on Scalability

In the limit as the number of processors goes to infinity, the theoretical speedup
depends only on the proportion of the serial content

That does not look so bad, but as we will show in the next slide it does not take
much serial content to quickly impact the speedup.

Unless virtually all of a serial program is parallelized, the possible speedup will be
limited — regardless of the number of cores available.

Amdahl’s Law and Limits on Scalability

P Max Speedup

0.50 2

0.75 4

0.90 10

0.95 20

0.99 100

● Unless all of a serial program is parallelized, the possible speedup will be
limited — regardless of the number of cores available.

Other Limits on Scalability

Amdahl’s law sets a theoretical upper limit on speedup, but there are other factors
that affect scalability:

● Problem Size
● Communication Overhead
● Uneven Load Balancing

In real-life applications that involve communications, synchronization (all threads
or processes must complete their work before proceeding) or irregular problems
(non-Cartesian grids), the speedup can be much less than predicted by Amdahl’s
law.

Scalability

● In general, a problem is scalable if it can handle ever increasing problem size.
● If we increase the number of processes and keep the efficiency fixed without

increasing problem size, the problem is strongly scalable.
● If we keep the efficiency fixed by increasing the problem size at the same rate

as we increase the number of processes, the problem is weakly scalable.

HPC Resources of Useful Information
● CSC Software Documentation

○ https://csc.cnsi.ucsb.edu/docs
● National HPC resources

○ ACCESS: https://access-ci.org/
○ San Diego Supercomputer Center: https://www.sdsc.edu/
○ NRP Nautilus: https://portal.nrp-nautilus.io/

● Transferring Data with Globus
○ https://www.globus.org/

● UCSB Aristotle Cloud (LSIT):
○ https://www.aristotle.ucsb.edu/ and

https://help.lsit.ucsb.edu/hc/en-us/categories/360005255312-Jupyter
● UCSB Campus Cloud Information:

○ https://www.it.ucsb.edu/explore-services/ucsb-campus-cloud
○ https://docs.cloud.ucsb.edu/

● More information, go to(research computing and data) https://rcd.ucsb.edu

https://csc.cnsi.ucsb.edu/docs
https://access-ci.org/
https://www.sdsc.edu/
https://portal.nrp-nautilus.io/
https://www.globus.org/
https://www.aristotle.ucsb.edu/
https://help.lsit.ucsb.edu/hc/en-us/categories/360005255312-Jupyter
https://www.it.ucsb.edu/explore-services/ucsb-campus-cloud
https://docs.cloud.ucsb.edu/
https://csc.cnsi.ucsb.edu/resources

Key points to Use Cluster

There are 70+ computed nodes on the POD cluster, but there are only 2 login
nodes.

● What does it mean?
● It means you are sharing these two login nodes with many other users when

you are login. Running intensive programs on the login node will cause the
login nodes to be slow for all users.

○ Login nodes are for editing files, transfering files, changing permissions, submitting jobs, and
other “small-intensive” tasks.

○ We recommend to use interactive for interactive runs (e.g. Compiling, installation, testing)
○ For long running jobs: submit jobs to the queue
○ $ srun -N 1 -n 1 -p batch --time=1:00:00 --pty bash -i

You can’t monopolize cluster - limit jobs/cores

Connecting to POD

● For the Windows system, open a
‘powershell’ window (type powershell in the
search bar)

● For the Mac or Linux system, you can open
the terminal (in Applications->Utilities)

● From either - use the ssh command
○ $ ssh your_user_name@pod.cnsi.ucsb.edu

● UCSB VPN is required to connect to the
campus cluster from off-campus

○ https://www.ets.ucsb.edu/pulse-secure-campus-vp
n/get-connected-campus-vpn

mailto:your_user_name@pod.cnsi.ucsb.edu
https://www.ets.ucsb.edu/pulse-secure-campus-vpn/get-connected-campus-vpn
https://www.ets.ucsb.edu/pulse-secure-campus-vpn/get-connected-campus-vpn

File Transfer

● How do I uploaded data & download my
files?

○ Graphical User Interface (GUI)
■ Filezilla: https://filezilla-project.org/
■ Cyberduck: https://cyberduck.io/

○ Command-Line Interface (CLI)
■ “scp” command

● FileZilla
○ Host: pod.cnsi.ucsb.edu
○ Username: your_user_name
○ Password: your_password
○ Port: 22

● Globus (for larger files transfers)
○ https://csc.cnsi.ucsb.edu/docs/globus-v5-new

Filezilla

https://filezilla-project.org/
https://cyberduck.io/
https://csc.cnsi.ucsb.edu/docs/globus-v5-new

Basic Linux Commands

● Listing files (ls)
● Print Working Directory (pwd)
● Change Directory (cd)
● Make Directory (mkdir)
● Copy (cp)
● Moving Files (mv)
● Remove Files (rm)
● Secure Copy (scp)
● Display beginning/end of file (head/tail)
● View file (cat)
● Display manual for a command (man)
● nano, vim, or emacs to edit your file.

Basic Linux Commands (ls & pwd)

● The ls (list) command files and directories in a directory.
○ General syntax:

ls [OPTIONS] [FILENAME]

○ OPTIONS include:

-l long listing, includes file date and size

-a displays all files

○ Example: $ ls -al /home/jay
■ ls: command
■ -al: flag
■ /home/jay: argument

● pwd stands for print working directory.

$ pwd

Basic Linux Commands (cd)

● The cd (change directory) command is used to change one directory to
another.
○ General syntax:

cd [DIRECTORY]

○ Change your present directory to the parent directory:

$ cd ..

○ Change your present directory to the home directory:

$ cd ~

○ .: your current directory

Basic Linux Commands (mkdir & cp)

● The mkdir (make directory) command creates a new directory.
○ General syntax:

mkdir [OPTIONS] Folder_name

● The touch command creates a new file.
○ General syntax:

touch file_name

● The cp (copy) command is used to copy a file or directory.
○ General syntax:

cp [OPTIONS] Source Destination

○ OPTIONS include:

-r recursively copy a directory, all files and subdirectories inside it.

Basic Linux Commands (mv & rm)

● The mv (move) command is used to move or rename a file or directory.
○ General syntax:

mv Source Destination

● The rm (remove) command is used to delete a file or directory.
○ General syntax:

rm [OPTIONS] file_name

○ OPTIONS include:
■ -r recursively delete a directory, all files and subdirectories inside it.

○ Important: After rm or rm -r command is executed, all files are gone and can’t be found in
recycle bin or the like!

Basic Linux Command (head, tail, and cat)

● The head/tail command is used to display the starting/ending lines of the file.
○ General syntax:

head [options] file_name

○ Print the first n line

$ head -n file_name

○ Print the last n line

$ tail -n 5 file_name

● The cat (concatenate) command is used to display the entire file on the screen.
○ General syntax:

cat file_name

There’s also the ‘more’ and ‘less’ commands to display a page at a time!

File Transfer

● The scp (secure copy) command is used to transfer files between two
locations.

○ General syntax:

scp [OPTIONS] LOCAL REMOTE

scp [OPTIONS] REMOTE LOCAL

scp [OPTIONS] REMOTE REMOTE

○ OPTIONS include:

-r recursively copy a directory, all files and subdirectories inside it.

More Linux Resource Information

● UCSB Software Carpentries
○ Introduction to the Unix Shell

(https://carpentry.library.ucsb.edu/workshop/2025/10/07/ucsb-shell.html)

https://carpentry.library.ucsb.edu/workshop/2025/10/07/ucsb-shell.html

Modules: Finding and Using Software on the POD

● Module system provides for the dynamics modification of a user’s
environment.

● Module commands allow the user to add applications and libraries to your
environment.

● This allows us to simultaneously and safely provides several versions of the
same softwares.

● All clusters have a default programming environment loaded for you when you
login.

● There are some functional software are not modularized in /sw directory.
Please take a look if you need.

○ E.g. /sw/csc, or /sw/chem
■ Add to path in .bashrc or .bash_profile

Modules: Finding and Using Software on the POD

1. List available modules

2. Search available modules for MatLab

3. Load the MatLab module

$ module avail
…

$ module avail MatLab
--- /sw/modulefiles ---
MatLab/R2021b MatLab/R2025a

$ module load MatLab/R2021b

Modules: Finding and Using Software on the POD

4. Unload the MatLab module

5. Purge all modules

6. List currently loaded modules

$ module unload MatLab/R2021b

$ module purge

$ module list
Currently Loaded Modulefiles:
 1) autotools 2) prun/1.2 3) gnu/5.4.0 4) ohpc

Reproducible and Portable Software Environment

Conda (Python)

● Beginner
● Experience with Conda
● Frequently changing

dependencies
● Support on Linux, Mac, and

Windows
● Run on native OS

HPC Containers

● Advanced User
● Experience with containers
● Often setup for a single tool
● Support on Linux, Mac and

Windows require a VM
● Run on packaged OS, e.g.

Ubuntu

● For more details about the Container will offer in the future quarter.

Conda Environment

● Package management system
○ Conda install and update open source packages (e.g. numpy, scipy, pytorch), and their

dependencies
● Environment management system

○ You can use conda to create, load, and switch between multiple different environments
○ Multiple versions of software packages can co-exist without interference

● Multi-platform (Linux, MacOS, and Windows)
○ Conda environment are portable and can be installed on multiple platforms

● Multi-language (Python, R, etc.)

Environment_1:

pytorch==2.0.0
pytorch-cuda==11.7

Environment_2:

pytorch==1.13.1
cpuonly

Environment_3:

pytorch==1.13.1
pytorch-cuda==11.6

Conda Environment

● Activate your conda environment
○ $ module load anaconda
○ $ source activate base

● Create a Conda environment
○ $ conda create --name my_env_1

● Activate your environment
○ $ conda activate my_env_1

● Install packages
○ $ conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 cpuonly -c pytorch

● List your Conda environment
○ $ conda env list

● Deactivate conda environment
○ $ conda deactivate

Batch Computing

● As computational and data requirements grow, researchers may find that they
need to make a transition from local resources (e.g., laptop, desktop) to
computer cluster or national HPC system.

● Jobs on these shared resources are typically executed under the control of a
batch submission system such as SLURM, PBS, etc.

● Jobs need to be configured so that the application(s) can be run
non-interactively and at a time determined by the scheduler.

● The user needs to specify the job duration, hardware requirements, and
partition. This is done with a batch script.

You can’t monopolize cluster - limit jobs/cores

Job Submission Script

● All jobs must be submitted to the queue - it just allocate nodes.
● Submission to the queue requires a job script to be written.
● Job script need to specify the resource that you need. There are three basic

units:
○ Number of Nodes
○ Number of Cores
○ Time (Optional)

● Other resource you might need to add such as: job name, memory, reminder
email, etc.

Simple Scheduling Algorithms

● Backfilling
○ The scheduler maintains the "First Come,

First Serve" concept without preventing
long-running jobs from executing.

○ The scheduler checks whether the first job in
the queue can be executed:

■ If true, the job is executed without
further delay.

■ If false, the scheduler looks for the next
job that can be executed without
extending the waiting time of the first
job in the queue and runs it.

○ Jobs that only need a few computing
resources are easily “backfillable.”

■ Small jobs will usually encounter
shorter queue times.

Ref:
https://docs-research-it.berkeley.edu/services/hig
h-performance-computing/user-guide/running-you
r-jobs/why-job-not-run/

https://docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/running-your-jobs/why-job-not-run/
https://docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/running-your-jobs/why-job-not-run/
https://docs-research-it.berkeley.edu/services/high-performance-computing/user-guide/running-your-jobs/why-job-not-run/

Simple Slurm Job Submission script

#!/bin/bash -l

#SBATCH —nodes=1 –ntasks-per-node 1

module load MatLab/R2021b

cd $SLURM_SUBMIT_DIR

/bin/hostname

matlab -nodisplay -nodesktop -nosplash <
my-inputfile.m

Slurm job script file: slurm-serial.job
Slurm job script file: slurm-mpi.job

#!/bin/bash -l

#SBATCH —nodes=1 –ntasks-per-node 12

module load intel/18

cd $SLURM_SUBMIT_DIR

/bin/hostname

mpirun -np $SLURM_NPROCS ./a.out >& logfile

● There are three simple Slurm script files in your directory: slurm-mpi2.job,
slurm-mpi.job, and slurm-serial.job.

$ sbatch slurm-serial.job ‘or’ $ sbatch -p short slurm-serial.job

Example Slurm Job Submission script

#!/bin/bash ### Set linux shell: Telling the shell to run the script using the batch
#SBATCH -J 'testJob' ### Job Name
#SBATCH --nodes=1 ### No. of Nodes
#SBATCH --ntasks=1 ### No. of Tasks
#SBATCH -p gpu ### Submit the job to Partition
#SBATCH –gres=gpu:1 ### Request 1 GPU
#SBATCH -o outLog ### Output Log File (Optional)
#SBATCH -e errLog ### Error Log File (Optional but suggest to have it)
#SBATCH -t 00:10:00 ### Job Execution Time
#SBATCH --mail-user=usernam@ucsb.edu ### Mail to you (Optional)
#SBATCH --mail-type ALL ### Mail send you when the job starts and end (Optional)

module purge all
module load anaconda ### Load softwares that the job depends on to execute
source activate my_env_1

cd $SLURM_SUBMIT_DIR/ ### Absolute path of the current working directory when you submit the job

python my_python.py

Slurm job script file: job.s

mailto:jaychi@ucsb.edu

Example Slurm Job Submission script (VASP)

#!/bin/bash ### Set linux shell: Telling the shell to run the script using the batch
#SBATCH --nodes=2 ### No. of Nodes
#SBATCH --ntasks=10 ### No. of Tasks
#SBATCH -o outLog ### Output Log File (Optional)
#SBATCH -e errLog ### Error Log File (Optional but suggest to have it)
#SBATCH -t 00:10:00 ### Job Execution Time
#SBATCH --mail-user=usernam@ucsb.edu ### Mail to you (Optional)
#SBATCH --mail-type ALL ### Mail send you when the job starts and end (Optional)

module purge all
module load intel/18
cd $SLURM_SUBMIT_DIR/ ### Absolute path of the current working directory when you submit the job

ulimit -s unlimited ### Needed for many VASP runs (if you see segfault, etc. errors, try this)

(time mpirun -np $SLURM_NTASKS ~/bin/vasp/vasp.5.4.4.std) >& logfile

Slurm job script file: vasp.job (note - VASP is licensed per group)

mailto:jaychi@ucsb.edu

Example Slurm Job Submission script
Slurm job script file: job.s

#!/bin/bash ### Set linux shell: Telling the shell to run the script using the batch
#SBATCH -J 'downloadFile' ### Job Name
#SBATCH --nodes=1 ### No. of Nodes
#SBATCH --ntasks=1 ### No. of Tasks
#SBATCH -o outLog ### Output Log File (Optional)
#SBATCH -e errLog ### Error Log File (Optional but suggest to have it)
#SBATCH -t 00:10:00 ### Job Execution Time
#SBATCH --mail-user=usernam@ucsb.edu ### Mail to you (Optional)
#SBATCH --mail-type ALL ### Mail send you when the job starts and end (Optional)

declare -xr SCRATCH_DIR="/scratch/jay/scratch_jay"
cd "${SCRATCH_DIR}"
git clone https://github.com/YoongiKim/CIFAR-10-images.git
tar -czf CIFAR-10-images.tar.gz CIFAR-10-images/

cp CIFAR-10-images.tar.gz $SLURM_SUBMIT_DIR/
cd $SLURM_SUBMIT_DIR/ ### Absolute path of the current working directory when you submit the job
tar -xvf CIFAR-10-images.tar.gz

mailto:jaychi@ucsb.edu

How to Submit and Monitor Your Job

● Once you have a job script, you may submit this script to SLURM using the
sbatch command. SLURM will find an available compute node or set of
compute nodes and run your job there, or leave your job in a queue until
some resources become available.

● List all current jobs from the user.

● Stop and delete the Job

$ sbatch job.s
Submitted batch job 1234567

$ squeue -u your_user_name
$ squeue -u $USER
$ showq your_user_name

$ scancel 1234567

How to Submit and Monitor Your Job

● List all partitions on the cluster

$ sinfo

● List the partition who are using

$ squeue -p short

● Report the job expected start time

$ squeue --start -j job_ID

Running Jobs on Pod (Slurm)

● Start/submit a job: $ sbatch job.s
● Check status of the running jobs: $ squeue -u user_name

$ showq user_name

● Delete a running job: $ scancel job_id

● Available partition:
○ Short partition: running under 2 hrs

■ #SBATCH -p short
○ Large memory partition: running the longest 37 days

■ #SBATCH -p largemem
○ GPU partition: running the longest 10 days

■ #SBATCH -p gpu

Wrap Up

● What is the Center for Scientific Computing (CSC) at UCSB?
● Introduction to High-Performance Computing (HPC) at UCSB
● Connect to the HPC Cluster
● Frequently Linux Commands
● File Transfer
● Conda Environment
● Modules on the Cluster
● SLURM Commands

Acknowledgement

• Acknowledgements - https://csc.cnsi.ucsb.edu/publications

Please acknowledge the CSC in publications and presentations if you are using our
facility’s computational resources (including staff involvement) in your research.

“We acknowledge support from the Center for Scientific Computing from the CNSI, MRL:
an NSF MRSEC (DMR-2308708) and NSF CNS-1725797.”

For users of GPU nodes, please add the grant number NSF OAC-1925717

https://csc.cnsi.ucsb.edu/publications

Questions and Thought

● What else content should we cover?
● Other ideas for a workshop?

○ Running Parallel Python / Matlab / Mathematica / Lumerical on the Cluster, Singularity/Docker
Container, etc.

● More Information:

https://csc.cnsi.ucsb.edu/

https://csc.cnsi.ucsb.edu/

