Publications

CSC research acknowledged in publications and presentations.

Please remember to continue to acknowledge the use of CSC resources with

 

Use was made of computational facilities purchased with funds from the National Science Foundation (CNS-1725797) and administered by the Center for Scientific Computing (CSC). The CSC is supported by the California NanoSystems Institute and the Materials Research Science and Engineering Center (MRSEC; NSF DMR 2308708) at UC Santa Barbara.

Selected Publications

2021

Mechanical Metrics of Virtual Polycrystals (MechMet)
Dawson, P. R., Miller, M. P., Pollock, T. M., Wendorf, J., Mills, L. H., Stinville, J. C., et al. (2021). Mechanical Metrics of Virtual Polycrystals (MechMet). Integrating Materials And Manufacturing Innovation, 1\textendash21. https://doi.org/10.1007/s40192-021-00206-7
Mass Transfer and Stellar Evolution of the White Dwarfs in AM CVn Binaries
Wong, T. L. S., & Bildsten, L. (2021). Mass Transfer and Stellar Evolution of the White Dwarfs in AM CVn Binaries. The Astrophysical Journal, 923, 125.
Magnetoentropic mapping and computational modeling of cycloids and skyrmions in the lacunar spinels GaV 4 S 8 and GaV 4 Se 8
Zuo, J. L., Kitchaev, D., Schueller, E. C., Bocarsly, J. D., Seshadri, R., Van der Ven, A., & Wilson, S. D. (2021). Magnetoentropic mapping and computational modeling of cycloids and skyrmions in the lacunar spinels GaV 4 S 8 and GaV 4 Se 8. Physical Review Materials, 5, 054410. https://doi.org/10.1103/PhysRevMaterials.5.054410
Magnetocaloric behavior and magnetic ordering in MnPdGa
Oey, Y. M., Kitchaev, D. A., Bocarsly, J. D., Schueller, E. C., Cooley, J. A., & Seshadri, R. (2021). Magnetocaloric behavior and magnetic ordering in MnPdGa. Physical Review Materials, 5, 014414. https://doi.org/10.1103/PhysRevMaterials.5.014414
Luminescent Metalenses for Focusing Spontaneous Emission
Mohtashami, Y., DeCrescent, R., Heki, L., Iyer, P., Butakov, N., Wong, M., et al. (2021). Luminescent Metalenses for Focusing Spontaneous Emission. Presented at the. IEEE.
The Long and Short of Labor Supply Changes
Nusbaum, C. (2021). The Long and Short of Labor Supply Changes.
Cosmic-CoNN: A Cosmic Ray Detection Deep-Learning Framework, Dataset, and Toolkit
Xu, C., McCully, C., Dong, B., Howell, A., & Sen, P. (2021). Cosmic-CoNN: A Cosmic Ray Detection Deep-Learning Framework, Dataset, and Toolkit. Arxiv Preprint Arxiv:2106.14922.
Electronic properties of the topological kagome metals YV 6 Sn 6 and GdV 6 Sn 6
Pokharel, G., Teicher, S. M. L., Ortiz, B. R., Sarte, P. M., Wu, G., Peng, S., et al. (2021). Electronic properties of the topological kagome metals YV 6 Sn 6 and GdV 6 Sn 6. Physical Review B, 104, 235139.
Efficient Tensor Core-Based GPU Kernels for Structured Sparsity under Reduced Precision
Chen, Z., Qu, Z., Liu, L., Ding, Y., & Xie, Y. (2021). Efficient Tensor Core-Based GPU Kernels for Structured Sparsity under Reduced Precision.
An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks
Wang, Y., Feng, B., Peng, X., & Ding, Y. (2021). An Efficient Quantitative Approach for Optimizing Convolutional Neural Networks.
Effects of consumer surface sterilization on diet DNA metabarcoding data of terrestrial invertebrates in natural environments and feeding trials
Kuile, A. M. -ter, Apigo, A., & Young, H. S. (2021). Effects of consumer surface sterilization on diet DNA metabarcoding data of terrestrial invertebrates in natural environments and feeding trials. Ecology And Evolution.
DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions
Wang, Y., Feng, B., & Ding, Y. (2021). DSXplore: Optimizing Convolutional Neural Networks via Sliding-Channel Convolutions. Arxiv Preprint Arxiv:2101.00745.
Direct numerical simulation of incompressible flows on parallel Octree grids
Egan, R., Guittet, A., Temprano-Coleto, F., Isaac, T., Peaudecerf, F. \c cois J., Landel, J. R., et al. (2021). Direct numerical simulation of incompressible flows on parallel Octree grids. Journal Of Computational Physics, 428, 110084. https://doi.org/10.1016/j.jcp.2020.110084
Determining crystallographic orientation via hybrid convolutional neural network
Ding, Z., Zhu, C., & De Graef, M. (2021). Determining crystallographic orientation via hybrid convolutional neural network. Materials Characterization, 111213.
Demystifying Species Interactions: Conservation and Theory from the Model Island System of Palmyra Atoll
Kuile, A. M. -ter. (2021). Demystifying Species Interactions: Conservation and Theory from the Model Island System of Palmyra Atoll.
Defect Chemistry and Hydrogen Transport in La/Sr-Based Oxyhydrides
Rowberg, A. J. E., Weston, L., & Van de Walle, C. G. (2021). Defect Chemistry and Hydrogen Transport in La/Sr-Based Oxyhydrides. The Journal Of Physical Chemistry C, 125, 2250\textendash2256. https://doi.org/10.1021/acs.jpcc.0c09222
Adsorption and Diffusion of Aluminum on β-Ga2O3 (010) Surfaces
Wang, M., Mu, S., & Van de Walle, C. G. (2021). Adsorption and Diffusion of Aluminum on β-Ga2O3 (010) Surfaces. Acs Applied Materials \& Interfaces, 13, 10650\textendash10655. https://doi.org/10.1021/acsami.0c22737
APNN-TC: Accelerating Arbitrary Precision Neural Networks on Ampere GPU Tensor Cores
Feng, B., Wang, Y., Geng, T., Li, A., & Ding, Y. (2021). APNN-TC: Accelerating Arbitrary Precision Neural Networks on Ampere GPU Tensor Cores. Arxiv Preprint Arxiv:2106.12169.
Antiphase boundary migration as a diffusion mechanism in a P3 sodium layered oxide
Kaufman, J. L., & Van der Ven, A. (2021). Antiphase boundary migration as a diffusion mechanism in a P3 sodium layered oxide. Physical Review Materials, 5, 055401. https://doi.org/10.1103/PhysRevMaterials.5.055401
An arbitrary Lagrangian Eulerian smoothed particle hydrodynamics (ALE-SPH) method with a boundary volume fraction formulation for fluid-structure interaction
Jacob, B., Drawert, B., Yi, T. -M., & Petzold, L. (2021). An arbitrary Lagrangian Eulerian smoothed particle hydrodynamics (ALE-SPH) method with a boundary volume fraction formulation for fluid-structure interaction. Engineering Analysis With Boundary Elements, 128, 274\textendash289. https://doi.org/10.1016/j.enganabound.2021.04.006