Publications

CSC research acknowledged in publications and presentations.

Please remember to continue to acknowledge the use of CSC resources with

 

Use was made of computational facilities purchased with funds from the National Science Foundation (CNS-1725797) and administered by the Center for Scientific Computing (CSC). The CSC is supported by the California NanoSystems Institute and the Materials Research Science and Engineering Center (MRSEC; NSF DMR 2308708) at UC Santa Barbara.

Selected Publications

2020

A high efficiency photon veto for the Light Dark Matter eXperiment
Akesson, T. \r, Blinov, N., Bryngemark, L., Colegrove, O., Collura, G., Dukes, C., et al. (2020). A high efficiency photon veto for the Light Dark Matter eXperiment. Journal Of High Energy Physics, 2020, 1\textendash35. https://doi.org/10.1007/JHEP04(2020)003
High order magnon bound states in the quasi-one-dimensional antiferromagnet $$\backslash$alpha $-NaMnO $ _2$
Dally, R. L., Heng, A., Keselman, A., Bordelon, M. M., Stone, M. B., Balents, L., & Wilson, S. D. (2020). High order magnon bound states in the quasi-one-dimensional antiferromagnet $$\backslash$alpha $-NaMnO $ _2$. Arxiv Preprint Arxiv:2001.07300. https://doi.org/https://arxiv.org/abs/2001.07300v1
Indexing of electron back-scatter diffraction patterns using a convolutional neural network
Ding, Z., Pascal, E., & De Graef, M. (2020). Indexing of electron back-scatter diffraction patterns using a convolutional neural network. Acta Materialia, 199, 370\textendash382. https://doi.org/10.1016/j.actamat.2020.08.046
Inflection points in the conduction-band structure of BaSn O 3
Rowberg, A. J. E., Krishnaswamy, K., & Van de Walle, C. G. (2020). Inflection points in the conduction-band structure of BaSn O 3. Physical Review B, 102, 115201. https://doi.org/10.1103/PhysRevB.102.115201
Interfacial structure and strain accommodation in two-phase Nb Co 1.2 Sn Heusler intermetallics
Eggeler, Y. M., Levin, E. E., Wang, F., Kitchaev, D. A., Van der Ven, A., Seshadri, R., et al. (2020). Interfacial structure and strain accommodation in two-phase Nb Co 1.2 Sn Heusler intermetallics. Physical Review Materials, 4, 093601. https://doi.org/10.1103/PhysRevMaterials.4.093601
iPIM: Programmable in-memory image processing accelerator using near-bank architecture
Gu, P., Xie, X., Ding, Y., Chen, G., Zhang, W., Niu, D., & Xie, Y. (2020). iPIM: Programmable in-memory image processing accelerator using near-bank architecture. Presented at the. IEEE.
Irradiation of Nanostrained Monolayer WSe $ _2 $ for Site-Controlled Single-Photon Emission up to 150 K
Parto, K., Banerjee, K., & Moody, G. (2020). Irradiation of Nanostrained Monolayer WSe $ _2 $ for Site-Controlled Single-Photon Emission up to 150 K. Arxiv Preprint Arxiv:2009.07315. https://doi.org/arXiv:2009.07315
Kinetic sequencing (k-Seq) as a massively parallel assay for ribozyme kinetics: utility and critical parameters
Shen, Y., Pressman, A. D., Janzen, E., & Chen, I. A. (2020). Kinetic sequencing (k-Seq) as a massively parallel assay for ribozyme kinetics: utility and critical parameters. Biorxiv. https://doi.org/10.1093/nar/gkab199
Latent Models of Molecular Dynamics Data: Automatic Order Parameter Generation for Peptide Fibrillization
Charest, N., Tro, M., Bowers, M. T., & Shea, J. -E. (2020). Latent Models of Molecular Dynamics Data: Automatic Order Parameter Generation for Peptide Fibrillization. The Journal Of Physical Chemistry B, 124, 8012\textendash8022. https://doi.org/10.1021/acs.jpcb.0c05763
Learning composition-transferable coarse-grained models: Designing external potential ensembles to maximize thermodynamic information
Shen, K., Sherck, N., Nguyen, M., Yoo, B., Köhler, S., Speros, J., et al. (2020). Learning composition-transferable coarse-grained models: Designing external potential ensembles to maximize thermodynamic information. The Journal Of Chemical Physics, 153, 154116. https://doi.org/10.1063/5.0022808
Local slip resistances in equal-molar MoNbTi multi-principal element alloy
Xu, S., Su, Y., Jian, W. -R., & Beyerlein, I. J. (2020). Local slip resistances in equal-molar MoNbTi multi-principal element alloy. Acta Materialia. https://doi.org/10.1016/j.actamat.2020.10.042
Magnetostructural coupling from competing magnetic and chemical bonding effects
Bocarsly, J. D., Johannes, M. D., Wilson, S. D., & Seshadri, R. (2020). Magnetostructural coupling from competing magnetic and chemical bonding effects. Physical Review Research, 2, 042048. https://doi.org/10.1103/PhysRevResearch.2.042048
Mapping skyrmion stability in uniaxial lacunar spinel magnets from first principles
Kitchaev, D. A., Schueller, E. C., & Van der Ven, A. (2020). Mapping skyrmion stability in uniaxial lacunar spinel magnets from first principles. Physical Review B, 101, 054409. https://doi.org/10.1103/PhysRevB.101.054409
Mechanisms of Asymmetric Membrane Formation in Nonsolvent-Induced Phase Separation
Garcia, J. U., Iwama, T., Chan, E. Y., Tree, D. R., Delaney, K. T., & Fredrickson, G. H. (2020). Mechanisms of Asymmetric Membrane Formation in Nonsolvent-Induced Phase Separation. Acs Macro Letters, 9, 1617\textendash1624. https://doi.org/10.1021/acsmacrolett.0c00609
Monomer Sequence Effects on Interfacial Width and Mixing in Self-Assembled Diblock Copolymers
Patterson, A. L., Yu, B., Danielsen, S. P. O., Davidson, E. C., Fredrickson, G. H., & Segalman, R. A. (2020). Monomer Sequence Effects on Interfacial Width and Mixing in Self-Assembled Diblock Copolymers. Macromolecules. https://doi.org/10.1021/acs.macromol.9b02426
Prospects for high carrier mobility in the cubic germanates
Rowberg, A., Krishnaswamy, K., & Van de Walle, C. G. (2020). Prospects for high carrier mobility in the cubic germanates. Semiconductor Science And Technology. https://doi.org/10.1088/1361-6641/ab97f6
Quasiparticles and Band Structures in Organized Nanostructures of Donor\textendashAcceptor Copolymers
Weng, G., & Vlcek, V. (2020). Quasiparticles and Band Structures in Organized Nanostructures of Donor\textendashAcceptor Copolymers. The Journal Of Physical Chemistry Letters, 11, 7177\textendash7183. https://doi.org/10.1021/acs.jpclett.0c02262
Protein Stability in TMAO and Mixed Urea-TMAO Solutions
Ganguly, P., Polak, J., van der Vegt, N. F. A., Heyda, J., & Shea, J. -E. (2020). Protein Stability in TMAO and Mixed Urea-TMAO Solutions. The Journal Of Physical Chemistry B. https://doi.org/10.1021/acs.jpcb.0c04357
Research Toward a Heterogeneously Integrated InGaN Laser on Silicon
Kamei, T., Kamikawa, T., Araki, M., DenBaars, S. P., Nakamura, S., & Bowers, J. E. (2020). Research Toward a Heterogeneously Integrated InGaN Laser on Silicon. Physica Status Solidi (A), 217, 1900770. https://doi.org/10.1002/pssa.201900770
The Proline-rich Domain Promotes Tau Liquid Liquid Phase Separation in Cells
Zhang, X., Vigers, M., McCarty, J., Rauch, J. N., Fredrickson, G. H., Wilson, M. Z., et al. (2020). The Proline-rich Domain Promotes Tau Liquid Liquid Phase Separation in Cells. Biorxiv. https://doi.org/10.1101/2020.05.04.076968