Publications

CSC research acknowledged in publications and presentations.

Please remember to continue to acknowledge the use of CSC resources with

 

Use was made of computational facilities purchased with funds from the National Science Foundation (CNS-1725797) and administered by the Center for Scientific Computing (CSC). The CSC is supported by the California NanoSystems Institute and the Materials Research Science and Engineering Center (MRSEC; NSF DMR 2308708) at UC Santa Barbara.

Selected Publications

2011

The electronic structure of the partially reduced rutile TiO2(110) surface: where are the unpaired electrons located?
etien, S. C. \, & Metiu, H. (2011). The electronic structure of the partially reduced rutile TiO2(110) surface: where are the unpaired electrons located?. J. Phys. Chem., 115, 4696.
Hybrid functional electronic structure of PbPdO2, a small-gap semiconductor
Kurzman, J. A., Miao, M. -S., & Seshadri, R. (2011). Hybrid functional electronic structure of PbPdO2, a small-gap semiconductor. J. Phys.: Condens. Matte, 23, 465501.
Hydrogenated cation vacancies in semiconducting oxides
Varley, J. B., Peelaers, H., Janotti, A., & Van de Walle, C. G. (2011). Hydrogenated cation vacancies in semiconducting oxides. J. Phys.: Condens. Matter, 23, 334212.
Implications of Shakedown for Design of Actively Cooled Thermostructural Panels
Vermaak, N., Valdevit, L., Evans, A. G., Zok, F. W., & McMeeking, R. M. (2011). Implications of Shakedown for Design of Actively Cooled Thermostructural Panels. Journal Of Mechanics Of Materials And Structures, 6, 1313.
Indirect Auger recombination as a cause of efficiency droop in nitride LEDs
Kioupakis, E., Rinke, P., Delaney, K. T., & Van de Walle, C. G. (2011). Indirect Auger recombination as a cause of efficiency droop in nitride LEDs. Appl. Phys. Lett., 98, 161107.
LDA and hybrid functional calculations for defects in ZnO, SnO2, and TiO2
Janotti, A., & Van de Walle, C. G. (2011). LDA and hybrid functional calculations for defects in ZnO, SnO2, and TiO2. Physica Status Solidi (B), 248, 799.
Mechanism of Visible-Light Photocatalysis in Nitrogen-Doped TiO2
Varley, J. B., Janotti, A., & Van de Walle, C. G. (2011). Mechanism of Visible-Light Photocatalysis in Nitrogen-Doped TiO2. Advanced Materials, 23, 2343-2347.
Miscible displacements in Hele-Shaw cells: three-dimensional Navier\textendashStokes simulations
Oliveira, R. M., & Meiburg, E. (2011). Miscible displacements in Hele-Shaw cells: three-dimensional Navier\textendashStokes simulations. Journal Of Fluid Mechanics, 687, 431\textendash460. Retrieved de http://journals.cambridge.org/abstract\_S0022112011003673 (Original work published 11/2011 C.E.)
Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide-semiconductor-based devices
Weber, J. R., Janotti, A., & Van de Walle, C. G. (2011). Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide-semiconductor-based devices. Journal Of Applied Physics, 109(3), 33715.
Neutron diffraction study of La4LiAuO8: Understanding Au3+ in an oxide environment
Kurzman, J. A., Moffitt, S. L., Llobet, A., & Seshadria, R. (2011). Neutron diffraction study of La4LiAuO8: Understanding Au3+ in an oxide environment. Journal Of Solid State Chemistry, 184, 1439.
A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections
Bleiholder, C., Wyttenbach, T., & Bowers, M. T. (2011). A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections. Int. J. Mass Spectrom, -, in press.
The Particle-Size Dependence of the Activation Energy for Decomposition of Lithium Amide.
Hoang, K., Janotti, A., & Van de Walle, C. G. (2011). The Particle-Size Dependence of the Activation Energy for Decomposition of Lithium Amide. Angewandte Chemie International Edition, -, in press.
Population-Based Resequencing of Experimentally Evolved Populations Reveals the Genetic Basis of Body Size Variation in Drosophila melanogaster
TL, T., AD, S., AT, F., WR, R., & AM, T. (2011). Population-Based Resequencing of Experimentally Evolved Populations Reveals the Genetic Basis of Body Size Variation in Drosophila melanogaster. Plos Genet 7(3): E1001336. Doi:10.1371/Journal.pgen.1001336, 7(3), e1001336.
Reverse Monte Carlo neutron scattering study of the\textquoterightordered-ice\textquoterightoxide pyrochlore Pb2Ru2O6
Shoemaker, D. P., Llobet, A., Tachibana, M., & Seshadri, R. (2011). Reverse Monte Carlo neutron scattering study of the\textquoterightordered-ice\textquoterightoxide pyrochlore Pb2Ru2O6. Journal Of Physics: Condensed Matter, 23(31), 315404.
The role of oxygen-related defects and hydrogen impurities in HfO2 and ZrO2
Janotti, A., & Van de Walle, C. G. (2011). The role of oxygen-related defects and hydrogen impurities in HfO2 and ZrO2. Microelectronic Engineering, 88(7), 1452-1456.
Self-consistent field simulations of self- and directed-assembly in a mixed polymer brush
Hur, S., Frischknecht, A. L., Huber, D. L., & Fredrickson, G. H. (2011). Self-consistent field simulations of self- and directed-assembly in a mixed polymer brush. Soft Mater., 7, 8776.
Strain effects on the electronic structure of SrTiO3: Toward high electron mobilities
Janotti, A., Steiauf, D., & Van de Walle, C. G. (2011). Strain effects on the electronic structure of SrTiO3: Toward high electron mobilities. Phys. Rev. B, 84, 201304.
Stress-induced R-MA-MC-T symmetry changes in BiFeO3 films
Christen, H. M., Nam, J. H., Kim, H. S., Hatt, A. J., & Spaldin, N. A. (2011). Stress-induced R-MA-MC-T symmetry changes in BiFeO3 films. Phys. Rev. B, 83, 144107.
Tin dioxide from first principles: Quasiparticle electronic states and optical properties
Schleife, A., Varley, J. B., Fuchs, F., Rödl, C., Bechstedt, F., Rinke, P., et al. (2011). Tin dioxide from first principles: Quasiparticle electronic states and optical properties. Phys. Rev. B, 83, 35116.
Towards inverse modeling of turbidity currents: the inverse lock-exchange problem
Lesshafft, L., Meiburg, E., Kneller, B., & Marsden, A. (2011). Towards inverse modeling of turbidity currents: the inverse lock-exchange problem. Computers \& Geosciences, 37, 521\textendash529. https://doi.org/10.1016/j.cageo.2010.09.015 (Original work published 04/2011 C.E.)